Yachting Monthly

  • Digital edition

Yachting Monthly cover

Sailing in lightning: how to keep your yacht safe

  • In partnership with Katy Stickland
  • July 22, 2022

How much of a concern is a lightning strike to a yacht and what can we do about it? Nigel Calder looks at what makes a full ‘belt and braces’ lightning protection system

Yachts moored under dark skies

Storm clouds gather at Cowes, but what lightning protection system, if any, does your boat have for anchoring or sailing in lightning? Credit: Patrick Eden/Alamy Stock Photo

Most sailors worry about sailing in lightning to some extent, writes Nigel Calder .

After all, going around with a tall metal pole on a flat sea when storm clouds threaten doesn’t seem like the best idea to most of us.

In reality, thunder storms need plenty of energy, driven by the sun, and are much less frequent in northern Europe than in the tropics.

However, high currents passing through resistive conductors generate heat.

Small diameter conductors melt; wooden masts explode; and air gaps that are bridged by an arc start fires.

A boat Sailing in lightning: Lightning is 10 times more likely over land than sea, as the land heats up more than water, providing the stronger convection currents needed to create a charge. Credit: BAE Inc/Alamy Stock Photo

Sailing in lightning: Lightning is 10 times more likely over land than sea, as the land heats up more than water, providing the stronger convection currents needed to create a charge. Credit: BAE Inc/Alamy Stock Photo

On boats, radio antennas may be vaporised, and metal thru-hulls blown out of the hull, or the surrounding fiberglass melted, with areas of gelcoat blown off.

Wherever you sail, lightning needs to be taken seriously.

Understanding how lightning works, will help you evaluate the risks and make an informed decision about the level of protection you want on your boat and what precautions to take.

Most lightning is what’s called negative lightning, between the lower levels of clouds and the earth. Intermittent pre-discharges occur, ionising the air.

Whereas air is normally a poor electrical conductor, ionised air is an excellent conductor.

These pre-discharges (stepped leaders) are countered by a so-called attachment spark (streamer), which emanates from pointed objects (towers, masts, or lightning rods) that stand out from their surroundings due to their height.

A lightning strike touching a field

Summer is the season for lightning storms in the UK. Here, one finds early at Instow, Devon. Credit: Terry Matthews/Alamy Stock Photo

This process continues until an attachment spark connects with a stepped leader, creating a lightning channel of ionised air molecules from the cloud to ground.

The main discharge, typically a series of discharges, now takes place through the lightning channel.

Negative lightning bolts are 1 to 2km (0.6 to 1.2 miles) long and have an average current of 20,000A.

Positive lightning bolts are much rarer and they can have currents of up to 300,000A.

Preventing damage when sailing in lightning

A lightning protection system (LPS) is designed to divert lightning energy to ground (in this case the sea), in such a way that no damage occurs to the boat or to people.

Ideally, this also includes protecting a boat’s electrical and electronic systems, but marine electronics are sensitive and this level of protection is hard to achieve.

Lightning protection systems have two key components: First, a mechanism to provide a path with as little resistance as possible that conducts a lightning strike to the water.

This is established with a substantial conductor from an air-terminal to the water.

A diagram showing the Components of an external and internal lightning protection system

Components of an external and internal lightning protection system. Credit: Maxine Heath

This part of the LPS is sometimes called external lightning protection.

Second, a mechanism to prevent the development of high voltages on, and voltage differences between, conductive objects on the boat.

This is achieved by connecting all major metal objects on and below deck to the water by an equipotential bonding system.

Without this bonding system high enough voltage differences can arise on a boat to develop dangerous side flashes.

The bonding system can be thought of as internal lightning protection.

Rolling ball concept

Lightning standards, which apply ashore and afloat, define five lightning protection ‘classes’, ranging from Class V (no protection) to Class I.

There are two core parameters: the maximum current the system must be able to withstand, which determines the sizing of various components in the system, and the arrangement and number of the air terminals, aka lightning rods.

Let’s look at the arrangement of the air terminals first. It is best explained by the rolling ball concept.

A lightning strike is initiated by the stepped leaders and attachment sparks connecting to form the lightning channel.

The distance between the stepped leader and the attachment sparks is known as the breakdown distance or striking distance.

If we imagine a ball with a radius equal to the striking distance, and we roll this ball around an object to be protected, the upper points of contact define the possible lightning impact points that need to be protected by air terminals.

Lightning protection theories and classifications rely on a 'rolling ball' concept to define requirements, areas of risk and protected areas.

Lightning protection theories and classifications rely on a ‘rolling ball’ concept to define requirements, areas of risk and protected areas. Credit: Maxine Heath

The air terminal will theoretically provide a zone of protection from the point at which the terminal connects with the circumference of the rolling ball down to the point at which that circumference touches the water.

The shorter the striking distance, the less the radius of the rolling ball and the smaller the area within the protection zone defined by the circumference of the rolling ball.

The smaller the protection zone, the more air terminals we need. So, we use the shortest striking distance to determine the minimum number and location of air terminals.

Class I protection assumes a rolling ball radius of 20m; Class II assumes a rolling ball radius of 30m.

Continues below…

David and Heather

Lightning: why we were struck

A personal investigation into how and why a catamaran was hit by lightning

The effects of a lightning strike on a VHF aerial on a yacht

‘Lightning destroyed the boat’s electronics’

Paul Tinley recounts a truly shocking lightning experience aboard his Beneteau 393 Blue Mistress and the subsequent insurance claim

lightning protection sailboat mast

Expert advice: boating emergency

A boating emergency is the sort of thing that everyone taking to the water should be prepared for even if,…

lightning protection sailboat mast

How batteries can explode – and how to avoid it

Marine electrical expert Nigel Calder explains why boat batteries emit hydrogen and how to minimise the dangers

Boat building standards are based on a striking distance/rolling ball radius of 30m (Class II).

For masts up to 30m above the waterline, the circumference of the ball from the point at which it contacts the top of the mast down to the water will define the zone of protection.

For masts higher than 30m above the waterline, the ball will contact the mast at 30m and this will define the limit of the zone of protection.

If Class I protection is wanted, the radius of the ball is reduced to 20m, which significantly reduces the zone of protection and, on many larger recreational boats, may theoretically necessitate more than one air terminal.

Protection classes

With most single-masted monohull yachts, an air terminal at the top of the mast is sufficient to protect the entire boat to Class I standards.

The circumference of the rolling ball from the tip of the mast down to the surface of the water does not intercept any part of the hull or rig.

However, someone standing on the fore or aft deck might have the upper part of their body contact the rolling ball, which tells us this is no place to be in a lightning storm.

Some boats have relatively high equipment or platforms over and behind the cockpit.

Protection classes to protect your boat while anchored or sailing in lightning

Protection classes to protect your boat while anchored or sailing in lightning

These fittings and structures may or may not be outside the circumference of the rolling ball.

Once again, this tells us to avoid contact with these structures during a lightning storm.

Ketch, yawl, and schooner rigged boats generally require air terminals on all masts, except when the mizzen is significantly shorter than the main mast.

The external LPS

The external LPS consists of the air terminal, a down conductor, and an earthing system – a lightning grounding terminal.

The down conductor is also known as a primary lightning protection conductor.

All components must be sized to carry the highest lightning peak current corresponding to the protection class chosen.

In particular, the material and cross-sectional area of the air terminal and down conductor must be such that the lightning current does not cause excessive heating.

The air terminal needs to extend a minimum of 150mm above the mast to which it is attached.

A graph depicting NASA's record of yearly global lightning events. The Congo once recorded more than 450 strikes per km2

A graph depicting NASA’s record of yearly global lightning events. The Congo once recorded more than 450 strikes per km2

It can be a minimum 10mm diameter copper rod, or 13mm diameter aluminum solid rod.

It should have a rounded, rather than a pointed, top end.

VHF antennas are commonly destroyed in a lightning strike.

If an antenna is hit and is not protected by a lightning arrestor at its base, the lightning may enter the boat via the antenna’s coax cable.

A lightning arrestor is inserted in the line between the coax cable and the base of the antenna.

It has a substantial connection to the boat’s grounding system, which, on an aluminum mast, is created by its connection to the mast.

In normal circumstances, the lightning arrestor is nonconductive to ground.

When hit by very high voltages it shorts to ground, in theory causing a lightning strike to bypass the coax – although the effectiveness of such devices is a matter of some dispute.

Down conductors

A down conductor is the electrically conductive connection between an air terminal and the grounding terminal.

For many years, this conductor was required to have a resistance no more than that of a 16mm² copper conductor, but following further research, the down conductor is now required to have a resistance not greater than that of a 20mm² copper conductor.

For Class I protection, 25mm² is needed. This is to minimise heating effects.

Let’s say instead we use a copper conductor with a cross-sectional area of 16mm² and it is hit by a lightning strike with a peak current corresponding to Protection Class IV.

A cable on the side of the yacht designed to ground the boat if sailing in lightning

Sailing in lightning: This catamaran relies upon cabling to ground from the shrouds but stainless steel wire is not a good enough conductor. Credit: Wietze van der Laan

The conductor will experience a temperature increase of 56°C. A 16mm² conductor made of stainless steel (for example, rigging ) will reach well over 1,000°C and melt or evaporate.

Shrouds and stays on sailboats should be connected into a LPS only to prevent side flashes.

The cross-sectional area of the metal in aluminum masts on even small sailboats is such that it provides a low enough resistance path to be the down conductor.

Whether deck- or keel-mounted, the mast will require a low resistance path, equivalent to a 25mm² copper conductor, from the base of the mast to the grounding terminal.

Grounding terminal

Metal hulled boats can use the hull as the grounding terminal. All other boats need an adequate mass of underwater metal.

In salt water this needs a minimum area of 0.1m². In fresh water, European standards call for the grounding terminal to be up to 0.25m².

A grounding terminal must be submerged under all operating conditions.

An external lead or iron keel on monohull sailing boats can serve as a grounding terminal.

A yacht out of the water on metal stilts while work is being done on it

This owner of this Florida-based yacht decided to keep the keel out of the equation when is came to a grounding plate. High electrical currents don’t like sharp corners, so a grounding plate directly beneath the mast makes for an easier route to ground. Credit: Malcolm Morgan

In the absence of a keel , the cumulative surface area of various underwater components – propellers, metal thru-hulls, rudders – is often more than sufficient to meet the area requirements for a grounding terminal.

However, these can only be considered adequate if they are situated below the air terminal and down conductor and individually have the requisite surface area.

Metal through-hulls do not meet this requirement.

If underwater hardware, such as a keel, is adequate to be used as the grounding terminal, the interconnecting conductor is part of the primary down conductor system and needs to be sized accordingly at 25mm².

Propellers and radio ground plates

Regardless of its size, a propeller is not suitable as a grounding terminal for two reasons.

First, it is very difficult to make the necessary low-resistance electrical connection to the propeller shaft, and second, the primary conductor now runs horizontally through the boat.

The risk of side flashes within the boat, and through the hull to the water is increased.

A hull and keel on a yacht showing damage from a lightning strike while sailing in lightning

Sailing in lightning: GRP hull, fairing filler and iron keel will have carried different voltages during the strike – hence this damage

An engine should never be included in the main (primary) conducting path to a grounding terminal.

On modern engines, sensitive electronic controls will be destroyed in a lightning strike, and on all engines, oil in bearings and between gears will create resistance and therefore considerable heat which is likely to result in internal damage.

However, as it is a large conductive object, the engine should be connected to the internal lightning protection system.

Internal lightning protection

On its way to ground, lightning causes considerable voltage differences in adjacent objects – up to hundreds of thousands of volts.

This applies to boats with a functioning external lightning protection system but without internal protection.

Although the lightning has been given a path to ground along which it will cause as little damage as possible, dangerous voltages can be generated elsewhere, resulting in arcing and side flashes, threatening the boat and crew, and destroying electronic equipment.

We prevent these damaging voltage differences from arising by connecting all substantial metal objects on the boat to a common grounding point.

A lightning strike hitting a yacht' mast while the boat is sailing in lightning

One of the holy grails of marine photography – a direct lightning strike on a yacht’s mast. Credit: Apex

The grounding terminal is also wired to the common grounding point.

By tying all these circuits and objects together we hold them at a common voltage, preventing the build-up of voltage differences between them.

All conductive surfaces that might be touched at the same time, such as a backstay and a steering wheel, need to be held to the same voltage.

If the voltages are the same, there will be no arcing and no side flashes.

The bonding conductors in this internal LPS need to be stranded copper with a minimum size of 16mm².

Note that there can be bonding of the same object for corrosion prevention, lightning protection, and sometimes DC grounding.

We do not need three separate conductors.

Electronic Device Protection

With lightning protection systems, we need to distinguish electric circuit and people protection from device protection.

Even with an internal LPS, high induced voltages may occur on ungrounded conductors (such as DC positive) which will destroy any attached electronics.

A mechanism is needed to short high transient voltages to ground.

This is done with surge protection devices (SPD), also known as transient voltage surge suppressors (TVSS) or lightning arrestors.

Marine-specific surge protection devices with a blue and black case. They are few in number and domestic models are not suitable for boats

Marine-specific SPDs are few in number and domestic models are not suitable for boats

In normal circumstances these devices are non-conductive, but if a specified voltage – the clamping voltage – is exceeded they divert the spike to ground.

There are levels of protection defined in various standards depending on the voltages and currents that can be handled, the speed with which this occurs, and other factors.

This is a highly technical subject for which it is advisable to seek professional support.

Most SPDs are designed for AC circuits.

When it comes to DC circuits there are far fewer choices available to boat owners although there are an increasing number for solar installations that may be appropriate.

There is no such thing as a lightning-proof boat, only a lightning-protected boat, and for this there needs to be a properly installed LPS.

Nigel Calder is a lifelong sailor and author of Boatowner's Mechanical and Electrical Manual. He is involved in setting standards for leisure boats in the USA

Nigel Calder is a lifelong sailor and author of Boatowner’s Mechanical and Electrical Manual. He is involved in setting standards for leisure boats in the USA

Even so, in a major strike the forces involved are so colossal that no practical measures can be guaranteed to protect sensitive electronic equipment.

For this, protection can be provided with specialised surge protection devices (SPDs).

The chances of a direct lightning strike on a yacht are very small, and the further we are north or south of the equator, the smaller this chance becomes.

It’s likely your chances of receiving a direct lightning strike are very much higher on a golf course than at sea.

‘Bottle brush’-type lightning dissipators are claimed by sellers to make a boat invisible to lightning by bleeding off static electrical charge as it builds up.

The theory rests upon the concept that charged electrons from the surface of the earth can be made to congregate on a metal point, where the physical constraints caused by the geometry of the point will result in electrons being pushed off into the surrounding atmosphere via a ‘lightning dissipator’ that has not just one point, but many points.

It is worth noting that the concept has met with a storm of derision from many leading academics who have argued that the magnitude of the charge that can be dissipated by such a device is insignificant compared to that of both a cloud and individual lightning strikes.

It seems that the viable choices for lightning protection remain the LPS detailed above, your boatbuilder’s chosen system (if any), or taking one’s chances with nothing and the (reasonable) confidence that it’s possible to sail many times round the world with no protection and suffer no direct strikes.

Whichever way you go, it pays to stay off the golf course!

Enjoyed reading Sailing in lightning: how to keep your yacht safe?

A subscription to Yachting Monthly magazine costs around 40% less than the cover price .

Print and digital editions are available through Magazines Direct – where you can also find the latest deals .

YM is packed with information to help you get the most from your time on the water.

  • Take your seamanship to the next level with tips, advice and skills from our experts
  • Impartial in-depth reviews of the latest yachts and equipment
  • Cruising guides to help you reach those dream destinations

Follow us on Facebook , Twitter and Instagram.

  • New Sailboats
  • Sailboats 21-30ft
  • Sailboats 31-35ft
  • Sailboats 36-40ft
  • Sailboats Over 40ft
  • Sailboats Under 21feet
  • used_sailboats
  • Apps and Computer Programs
  • Communications
  • Fishfinders
  • Handheld Electronics
  • Plotters MFDS Rradar
  • Wind, Speed & Depth Instruments
  • Anchoring Mooring
  • Running Rigging
  • Sails Canvas
  • Standing Rigging
  • Diesel Engines
  • Off Grid Energy
  • Cleaning Waxing
  • DIY Projects
  • Repair, Tools & Materials
  • Spare Parts
  • Tools & Gadgets
  • Cabin Comfort
  • Ventilation
  • Footwear Apparel
  • Foul Weather Gear
  • Mailport & PS Advisor
  • Inside Practical Sailor Blog
  • Activate My Web Access
  • Reset Password
  • Customer Service

lightning protection sailboat mast

  • Free Newsletter

lightning protection sailboat mast

Maine Cat 41 Used Boat Review

CS 30 stern. (Photo/ Bert Vermeer)

CS 30 Used Boat Review

The Hinckley 49 comes in four different cabin layouts, but all feature mahogany or ash, with no bare fiberglass visible. Photo courtesy of Yacht World.

Hinckley 49 Used Boat Review

The Island Packet 31's wide beam adds to her stability and interior space, while rugged construction offers many decades of cruising adventures.

Island Packet 31 Used Boat Review

Irwin Vise-Grip Wire Stripper. (Photo/ Adam Morris)

Best Crimpers and Strippers for Fixing Marine Electrical Connectors

600-watt solar panel system on Summer Twins 28 sailing catamaran Caribbean Soul 2. (Photo/ Clifford Burgess)

Thinking Through a Solar Power Installation

lightning protection sailboat mast

How Does the Gulf Stream Influence our Weather?

A lithium conversion requires a willing owner and a capable craft. Enter the Privilege 435 catamaran Confianza.

Can You Run a Marine Air-Conditioner on Battery Power?

lightning protection sailboat mast

Master the Sailing Basics: Never Stop Learning the Little Things

1. Winch handle camera mount. It can’t fall of, is quick to place or remove in any conditions, and you can rotate it to change angles. (Photo/ Drew Frye)

How to Mount Your Camera on Deck: Record Your Adventures with…

The crew at Hop-O-Nose Marina in Catskill, NY helped us remove our mast. They also helped us build cradles on the deck so that we could carry our mast and rigging on deck as we traveled the Erie Canal. (Photo/ Alison Major)

Un-Stepping the Mast for America’s Great Loop

Das Boot's symmetric spinnaker is flying while the boat races downwind at the Fran Byrne Regatta, Aug. 2007. (Photo/ Nick Van Antwerp)

Headsails and Spinnakers: How to Explain Their Functions to a Beginner

lightning protection sailboat mast

Sinking? Check Your Stuffing Box

Instead of dreading a squall, think about it as a way to fill up your water tanks. PS tested ways to make sure the rainwater you catch is clean, tasty and safe to drink.

The Rain Catcher’s Guide

The engine mounts on my Perkins M20 diesel needed to be changed. Luckily, they are accessible so I was able to change them myself with a few basic tools and new parts. If your engine is less accessible, you'll need to ask a professional to change the mounts. (Photo/ Marc Robic)

How to Change Your Engine Mounts

The stable residual and low aluminum corrosion rates make Clean Tabs Puriclean (far right) the PS Best Choice among tank sanitizing chemicals. Our Best Choice among tank freshening and disinfection chemicals are the Mega Tabs (far left).

Keeping Water Clean and Fresh

With a few inexpensive materials and a bit of patience, you can redo the vinyl lettering on your boat yourself. (Photo/ Marc Robic)

Vinyl Boat Lettering DIY Application and Repair

Little things that are hardly necessary but nice to have start in the galley.

Those Extras you Don’t Need But Love to Have

lightning protection sailboat mast

Three-Model BBQ Test

lightning protection sailboat mast

Alcohol Stoves— Swan Song or Rebirth?

lightning protection sailboat mast

Womens Foul-Weather Gear

lightning protection sailboat mast

Preparing Yourself for Solo Sailing

lightning protection sailboat mast

How to Select Crew for a Passage or Delivery

lightning protection sailboat mast

Preparing A Boat to Sail Solo

lightning protection sailboat mast

Chafe Protection for Dock Lines

Waxing and Polishing Your Boat

Waxing and Polishing Your Boat

lightning protection sailboat mast

Reducing Engine Room Noise

lightning protection sailboat mast

Tricks and Tips to Forming Do-it-yourself Rigging Terminals

marine toilet test

Marine Toilet Maintenance Tips

  • Boat Maintenance
  • Systems & Propulsion
  • Marine Electronics
  • Safety & Seamanship

Getting the Charge Out of Lightning

No matter how well protected the boat may be, few manage to escape unscathed..

Miraculously, relatively few people are injured in lightning strikes. Frequently, of course, no one is aboard the boat when it is struck, and it is only by after-the-fact detective work that the extent of damage is discovered.

There are, however, two attendant bits of unpleasantness water, and contaminates like dirt, dust, rust, scale, bugs, and bones.

Most boat owners have only the vaguest idea of what is involved in protecting their boats from lightning damage. Many believe that their boats are already protected by the boat’s grounding system. Most are wrong.

Just because your boat may be bonded with heavy cop-per conductors connecting the masses of metal in the boat doesn’t mean that it is protected against lightning. A bon-ding system may be a part of a lightning protection system, but bonding itself offers no protection to the boat unless a good, direct path to ground is part of the system.

The purpose of bonding is to tie underwater metal masses in the boat together to reduce the possibility of galvanic corrosion caused by dissimilar metals immersed in an electrolyte. The purpose of lightning grounding is to get the massive electrical charge of a lightning strikethrough the boat to ground with the least possible amount of resistance.

Most lightning never reaches the earth: it is dispersed between clouds of different electrical potential. The lightning that concerns sailors is the discharge of electricity between a cloud and the surface of the earth, or an object on the surface of the earth, namely, your boat. The amount of electricity involved in lightning can be, well, astronomical. We’re talking about millions of volts.

Granted, the duration of a lightning strike is extremely short. But in the fraction of a second it takes for lightning to pass through your boat to ground, a great deal of damage can be done. And here’s the kicker. No matter how elaborate your lightning protection system, there is no guarantee that a lightning strike will not damage your boat.

Certainly you can reduce the potential damage from a lightning strike. That’s what protection is all about. But to think you can eliminate the possibility of damage is folly. There are too many recorded instances of so-called properly lightning-protected boats suffering damage to believe in the infallibility of lightning protection systems.

The goal of lightning protection is to offer a low resistance path to ground, in this case, the water. On a sailboat equipped with an aluminum mast and stainless steel standing rigging, the basic components of the lightning protection system are in place.

While neither aluminum nor stainless steel is an outstanding electrical conductor, the large cross-sectional area of both the mast and the rigging provide adequate conductivity for lightning protection. The trick, however, is get-ting the electricity from the mast and rigging to the water.

The straighter the path is from conductor (mast and rigging) to ground, the less likely are potentially dangerous side flashes. Put simply, side flashes are miniature lightning bolts which leap from the surface of the conductor to adjacent metal masses due to the difference in electrical potential between the charged conductor and the near by mass of metal. Ideally, therefore, the path from the bottom of the mast and rigging to ground would be absolutely vertical. In practice, this is rarely achieved.

If the boat has an external metal keel, the mast and standing rigging is frequently grounded to a keelbolt. There are pitfalls to this method. First, the connection between the bottom of the mast and rigging to the keelbolt must be highly conductive. ABYC (American Boat and Yacht Council) standards say that each primary conductor for lightning protection systems should have a resistance equal to or less than a #4 AWG copper conductor. (Secondary conductors should have resistance not greater than a #6 AWG copper conductor.)There is no drawback to using an even larger conductor.

Connecting the short conductor to the mast and keelbolt presents some problems. A crimp eye can be used on the end that is to be attached to the mast, but you may have to fabricate a larger eye for attachment to the keelbolt. This can be made from sheet copper. Soldering the connections is not recommended, since the heat generated in a lightning strike could melt the solder.

Then you have to face up to a basic problem. Your mast is aluminum, yet you’re connecting it to ground with a copper cable. Everyone knows that aluminum and copper are not galvanically compatible, so what’s the solution? While it will not eliminate corrosion, a stainless steel washer placed between the copper cable’s end fitting and the aluminum mast will at least retard it. But this connection is going to require yearly examination to make sure that a hole isn’t being eaten through the mast. In addition, of course, the process of corrosion creates wonderful aluminum oxide byproducts, which have very low conductivity. The aluminum oxide may reduce conductivity to the point where your theoretical attachment to ground is in fact non-existent. Once again, disassembling the connection and cleaning it yearly are essential to maintain conductivity. Constant attention to all the conductor connections is essential in any grounding system, whether it’s for lightning protection or grounding of the electrical system.

Even if all the connections in the system are flawless, you’re faced with getting the electrical charge out of the boat and into the water. Keels are always coated with bottom paint. Depending on the type of bottom paint used, the keel itself may be a fairly poor ground. An iron keel properly primed with epoxy mastic before bottom paint is applied is fairly well isolated from the water. If it weren’t, it would rust. The same goes for lead keels prepared in the same way. In practice, the electrical charge will probably be powerful enough to get to ground through the protection system on the keel. The same problem exists, of course, on painted metal boats with their systems of barrier coats. The barrier coats reduce conductivity, but do not eliminate it.

Do not under any circumstances ground the rigging or mast to ballast located inside a fiberglass hull shell. The electrical charge tends to travel on the surface of the conductor. Finding no path to ground from the isolated inside ballast, you may literally blow a line of holes through the hull along the top of the ballast line. Surveyors have reported occurrences of this type of damage to us, as strange as it may sound.

For boats with inside ballasting, or for powerboats, some type of external grounding plate is required. These are usually made from sintered bronze: tiny particles of bronze fused into a porous block. The effect is to give a much larger surface area than defined by the dimensions of the block itself. It is very important to use as large aground plate as necessary, and to position it as close to vertically in line with the primary lightning conductor (the mast) as possible.

Racing boats are not going to be willing to do this, since a ground plate creates a fair amount of drag in light air. Cruisers would be advised to trade off the drag for the protection offered.

A grounding plate installation is not a nail-it-in-place-and-forget-it installation. As with any bare metal underwater, oxides build up in the grounding plate, reducing its efficiency. The manufacturer of the plate can tell you the proper remedies, which may include removing the plate yearly and treating it in an acid bath to restore proper conductivity.

It is probably a poor practice to use the same grounding plate for lightning grounding and grounding of electronics such as Loran. If the lightning charge is too great for the plate to instantaneously transmit to ground, the charge may travel back through the ground wire to your electronics, with disastrous results.

For this article in its entirety please click the below link…

Getting the Charge Out of Lightning   

RELATED ARTICLES MORE FROM AUTHOR

Leave a reply cancel reply.

Log in to leave a comment

Latest Videos

Hunter Legend 35.5 - Behind the Curtain video from Practical Sailor

Hunter Legend 35.5 – Behind the Curtain

Whipping Line On Your Sailboat video from Practical Sailor

Whipping Line On Your Sailboat

Hallberg Rassy 42 - Behind the Curtain video from Practical Sailor

Hallberg Rassy 42 – Behind the Curtain

The ICW - The Easiest Way - Sail to the Sun Rally video from Practical Sailor

The ICW – The Easiest Way – Sail to the Sun...

  • Privacy Policy
  • Do Not Sell My Personal Information
  • Online Account Activation
  • Privacy Manager

An approach to a modern sailboat lightning protection system

When lightning strikes, and it does, having a lightning protection system can save your life

We were lucky when we were struck by lightning on our small 35’ GRP cruising sailing boat in Turkey in 2013, but without an LPS. All the plastic and some of the metal gear at the top of the mast exploded (see photo below) and simultaneously the headlining in the saloon exploded downwards with a loud bang. So much smoke that we initially thought we were on fire; but my wife and I survived unscathed to tell the tale.

The most likely discharge exit was through the propeller shaft, but practically all electronics were violently destroyed and, as an electrical and electronic engineer, my assessment for our insurance claim afterwards showed that most devices had experienced severe arcing with small electronic components having exploded internally (see photo below).

An lightning protection system is a bonding, grounding and shielding arrangement made of four distinct parts: Air terminals, down conductors, a low-impedance ground system and sideflash protection.

lightning1

The best lightning protection system cannot guarantee personal protection, or protection from damage to sensitive electronic equipment. Also it is not a lightning prevention system. I knew the private owner of one large blue water catamaran which has been struck three times in its life and it is not an old boat. Fortunately no one was hurt on any occasion, but many electronic systems on that complex boat were effected and had to be replaced on each occasion. Unfortunately catamarans are many times more likely to be struck than mono-hulls and records in the USA, where certain locations are particularly prone to electrical storms (e.g. Florida where boat ownership is high), show that mono-hull sailing boats are about 25 times more likely to be struck than motoryachts.

Lightning is very hard to study and to accurately predict its behaviour is almost impossible, but it is driven by the simple fact that a massive potential difference (voltage) exists between the highly charged clouds of a brewing thunderstorm and the surface of the Mother Earth. Eventually, a path is found through the atmosphere down to ground for some of the accumulated charge to discharge and the creation of a discharge path first requires the creation of so called ‘streamers’ [1],[2]. Bear in mind that air breaks down at 3 million Volts per metre, and you get some inkling of the enormous voltage differences involved.

In the middle of a large body of water, with your sailing yacht in it, the top of the mast, being the highest point around, looks like a handy point to discharge through. So the LPS is designed to control the first point of discharge and then make the onward path to ‘ground’ – in this case the sea – as direct as possible and capable of conducting very high currents for a very short time during the discharge.

lightning protection sailboat mast

In 2006, the American Boat and Yacht Council (ABYC) technical information report TE-4 [3], [4] recommended the following:-

• lightning protection system conductors must be straight and direct and capable of handling high currents. The main ‘down’ conductor is recommended to be 4AWG, or 25mm2 in European sizing; see diagram.

• A large enough area ground must be provided between the vessel and the water to offer an adequately low resistance path (ABYC recommends 1sq.ft. {0.1m2} in salt water; much larger in fresh water. NB this is not adequate for acting as the SSB counterpoise). Metal-hulled vessels naturally offer a large ground contact area with the sea, but the connection between the hull and all other electrical systems needs careful consideration.

• Heavy metal objects such as fuel tanks and engines must be bonded to the ground bonding arrangement to reduce the risk of ‘side flashing’ where the lightning literally can jump from one conductor to another, seemingly better path. Similarly, it can jump out of corners in cabling, so if bends must be made, then they should not be more than 90° and with as large a bend radius as possible.

The basic arrangement is as depicted in the diagram, where the ‘air terminal’ is a rounded end (circled in photo) metal wand mounted at the top of the mast to ‘attract’ lightning to it and, most importantly, to stand at least 6” (15cm) higher than anything else e.g. above the VHF or other antenna. Providing the air terminal is securely electrically bonded, presenting a high surface contact area, low resistance path to an aluminium mast, the mast itself can be used as the down conductor at least to the deck or keel, depending on where the mast is stepped. In the case of wooden, or carbon composite masts they present too high electrical resistance and a 4AWG cable must be run straight down the mast as the main down conductor. From the bottom of the aluminium mast or down conductor, the 4AWG onward path needs to be as direct and short as possible to the ground plate, or the metal hull.

lightning protection sailboat mast

It is actually better to leave through-hull metal fittings electrically isolated if they are already insulated from the rest of the boat by dint of their attached rubber or plastic hoses and their insulating mounting plates – decent quality bronze alloy seacocks and engine intake strainers will not unduly corrode if left submerged for extended periods of time without needing connecting to the vessel’s earth bonding. However, in the US it is more normal to bond everything metal below the waterline, use a tinned copper bus bar running the necessary length of the vessel, above any bilge water level, to connect each through-hull fitting to, which is then connected at one point only to the main grounding route out of the boat. This bonding arrangement is gaining in popularity outside the US with consideration of a lightning protection system.

Note in the diagram that all tie-ins, including fore- and back-stay (unless insulated) must use at least 6AWG (16mm2 European) cable. All large metal objects within 6ft (2m) of the lightning down path also need tying in with 6AWG (16mm2) cable. Examples are metal fuel tanks, main engines (despite them usually already being connected to the water via their prop shaft) and generators; this is to minimize the risk of ‘side flashing’ where lighting can literally jump from conductor to metal object, looking for a better path to ground, even if one does not exist.

In considering of the creation of a ground plate of sufficient size, a metal hulled vessel is ideal, but nevertheless only one electrical connection point to the hull should be made from the main 4AWG down conductor. This same point should have all the other earth bonding made to it alone. The DC main negative bus in turn should be connected to the earth bonding in only one place, though European boats generally have their DC system isolated from any bonding system to discourage DC earth faults, the US differs in this respect, preferring direct bonding. One solution to this dilemma is to use a suitably rated surge capacitor between the DC negative busbars and the bonding system for the LPS. In the case of a non-metal hulled sailing vessel, the attraction of using the keel as a discharge point should be resisted as it is in contact with the water some distance below the surface where already a lot is going on with respect to charge balancing, so an alternative point is likely to be sought out by the discharge, nearer the surface. It seemed clear to our very experienced (and ancient) marine insurance surveyor that, during our own strike in Turkey, the discharge was out through the propeller shaft.

So far, so good, but recent thinking and good practice [5],[6] has modified the above ideas to take into consideration the danger of side flashing much more. A side flash is an uncontrolled spark that carries current to the water and can do extensive damage to hulls and equipment. The good practice and standards for a lightning protection system relating to marine situations, such as they exist (see NFPA 780, latest version, especially chapter 8, ‘Protection for Watercraft’, [7]) are tending to treat a boat more and more like a building to exploit those well tried and tested techniques used in a land based situation. Rather than a ‘cone’ below the air terminal, the ‘zone of protection’ is now more reliably envisaged to be formed from a ‘rolling sphere’ of 30m radius, as shown below for a larger yacht [7],[8]:-

diagram02

Diagram of Boat with Masts in Excess of 15 m (50 ft) Above the Water; Protection Based on Lightning Strike Distance of 30 m (100 ft).

With a large building, the down conductors from the various air terminals run down the outside of the building to a number of grounding stakes; not so with a yacht where, as we have described, we’ve now concentrated the discharge right in the middle of the boat, where the danger of side flashing into other metal parts is very real; if these parts are not bonded and protected by a properly designed, low impedance path there’s are very real further danger of the side flash finding its way onwards and out through the side of the boat to the surrounding water surface. This has indeed been experienced by an American friend of mine on a high-tech, all carbon racing sailing boat on its way back to Newport, which after being unavoidably struck several times in a violent storm, put in to New York and immediately hauled to find literally a thousand or more tiny holes around the waterline when the discharge had exited! Apparently lightning does not always take the straightest path to the water, but rather has an affinity for the waterline.

The latest version of this NFPA 780 standard recognises this danger and, in a departure from the older versions, provides for multiple grounding terminals to provide the shortest path to the surrounding water surface. These ‘supplemental grounding electrodes’ conduct lightning current into the water in addition to that conducted by a main ground plate. The new standard provides for a continuous conducting loop outboard of crewed areas, wiring and electronics. Placing the loop conductor well above the waterline, outboard, and with grounding terminals below it retains the advantages of an equalization bus, whilst correcting for its weakness with side flashes having nowhere else otherwise to go.

lightning protection sailboat mast

Protection of electronic equipment by a hermetic system on larger yachts

So much electronic equipment on board a yacht struck by lightning is very susceptible to permanent damage. The only safe way to fully protect electronic equipment is to have it completely disconnected from all other circuits when thunder and lightning are nearby, and I still to this day do that as much as possible, but how practical is complete protection really?

A recent idea I had whilst discussing the problem with a 30m ketch owner may have some merit, and I call it a ‘hermetic system’, so suggesting that it is sealed from the outside world: If the most critical and/or sensitive electronic equipment can be enclosed within its own quite separate power and cabling set, separate from the rest of the boat’s electrical and electronic wiring, then it is possible that it could be saved in the event of a lightning strike. One way to do this would be to run all those systems required to be protected effectively off an Uninterruptable Power Supply (UPS), powered from the AC bus (via the generator), then down converted to the necessary 24/12VDC electronics supply. In the event of a lightning storm, all AC connections to the UPS and any signals, power or ground returns outside the hermetic system must be open circuited by large clearance contactors. The electronics contained within the hermetic system can still continue to operate, for a limited time (depending on the capacity of the UPS batteries) and further choices can be made about what to shut down within the hermetic system to extend the battery life, leaving for example just the absolute minimum electronics to continue to safely navigate e.g. Depth, GPS, Chartplotter. Very careful consideration must be given to cable runs.

The VHF antenna on the main mast may be protected by a surge arrestor from one of several suppliers e.g. www.nexteklightning.com. No guarantee is likely to the effectiveness of this as a protection device in all cases of lightning strike and the manufacturers should be consulted for further information.

I certainly now resort to the marvel of a GPS chart plotter on my mobile phone when there’s a nasty electrical storm about and I’m out at sea! References: –

1. Top 10 best lightning strikes (USA) by Pecos Hank, with rare photo of an upward streamer. 2. http://marinelightning.com/index_files/SFMechanism.gif for a graphic showing the formation of negative streamers 3. ABYC (US) technical report TP-4 “Lightning Protection”. 4. Nigel Calder – “Boatowner’s Mechanical and Electrical Manual: How to Maintain, Repair, and Improve Your Boat’s Essential Systems” 5. “Complexities of Marine Lightning Protection”, By Ron Brewer, EMC/ESD Consultant, April 2011 6. “A New Concept for Lightning Protection of Boats – Protect a Boat like a Building” Ewen M. Thomson, Ph.D.; published in the October 2007 edition of Exchange 7. National Fire Protection Association (US) document NFPA 780-2014 “Standard for the Installation of Lightning Protection Systems” – see especially chapter 8 ‘Protection for Water craft’. 8. “Evaluation of Rolling Sphere Method Using Leader Potential Concept – A Case Study” P.Y. Okyere, Ph.D & *George Eduful – Proceedings of The 2006 IJME – INTERTECH Conference

Feature article written by Andy Ridyard. Andy Ridyard has been a professional electrical and electronics engineer for more than 35 years and started SeaSystems in 2008. His business is dedicated to providing troubleshooting, repair and installation services to superyachts internationally, specialising in controls and instrumentation. He lives with his wife in Falmouth, UK, but works mostly in the Mediterranean. SeaSystems has fixed countless intractable problems with marine control systems, marine electronics, Programmable Logic Controllers (PLCs) and marine electrical systems. For more information visit SeaSystems.biz .

Instagram Posts from the IIMS @iimsmarine

  • Privacy Overview
  • Strictly Necessary Cookies
  • Performance & Marketing Cookies

lightning protection sailboat mast

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

Name Provider Purpose Expiration
wordpress_[hash] WordPress Used by WordPress to store your authentication details upon login and is limited to the admin area. Just under 1 year
wordpress_logged_in_[hash] WordPress Used by WordPress to enable the interface to recognize you as a logged-in user and determine which account and preferences to use for various features. Just under 1 year
wp-settings-{time}-[UID] WordPress Used by WordPress to facilitates customizing your view of the admin interface and the main site interface. The number UID is the individual user ID from the user database table. 1 year
wordpress_test_cookie WordPress Used by WordPress to probe the ability of WordPress to set cookies. 15 minutes
_grecaptcha Google This cookie is set by Google reCAPTCHA, which protects the site against spam enquiries on contact forms. 6 months
m Stripe Used by Stripe Payment Services for fraud prevention and detection. 400 days
__stripe_mid Stripe Stripe sets this cookie to process payments. 1 year
__stripe_sid Stripe Stripe sets this cookie to process payments. 1 year
wc_fragments_* WooCommerce Used by WooCommerce for eCommerce functionality. 1 year
wc_cart_hash_* WooCommerce Used by WooCommerce to save items in a shopping cart. session
woocommerce_items_in_cart WooCommerce Used by WooCommerce to save items in a shopping cart. session
wp_woocommerce_session_ WooCommerce Used by WooCommerce for eCommerce functionality. 2 days

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages. This also helps us optimise our marketing campaigns. User data sent to Google Analytics may be used for ad personalization and measurement of our ad campaigns. Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!

Name Provider Purpose Expiration
_ga_* Google Analytics Contains a unique identifier used by Google Analytics 4 to determine that two distinct hits belong to the same user across browsing sessions. Accepting Marketing and Analytical Cookies allows us to use the data collected by this cookie for marketing and analytical purposes. 1 year
_ga Google Analytics Contains a unique identifier used by Google Analytics 4 to determine that two distinct hits belong to the same user across browsing sessions. Accepting Marketing and Analytical Cookies allows us to use the data collected by this cookie for marketing and analytical purposes. 2 years
_gid Google Analytics Contains a unique identifier used by Google Analytics to determine that two distinct hits belong to the same user across browsing sessions. Accepting Marketing and Analytical Cookies allows us to use the data collected by this cookie for marketing and analytical purposes. 1 day
_fbp Facebook Used by Facebook to deliver a series of advertisement products such as real time bidding from third party advertisers. 90 days

Marine Lightning Protection

  • Introduction
  • Sideflashes
  • The lightning system
  • Collaboration
  • Air terminals
  • Grounding concepts
  • Grounding guide
  • Design & build
  • Connections
  • Grounding Strips
  • Siedarc TM Electrodes

Marine Lightning Protection Inc. Being at the forefront of both the basic science and product development in this area, we are uniquely qualified to address all of the problems inherent in lightning protection on the water. Whether for a fiberglass jet ski or a superyacht our method is the same - to place lightning conductors on the outside of the vessel with multiple air terminals at the top and multiple grounding terminals at the waterline. This provides a shielding enclosure, external current pathways, and more effective grounding to the water surface. We can also address lightning issues with metal-hulled vessels ranging from jon boats to supertankers, and can give advice on electronics protection by considering wire routing, shielding and surge suppression.
The desirable features of a ship lightning protection system cover a broad range from personal safety of passengers, surge protection of electronics, protection of vulnerable instruments or structures, lowered downtime to repair lightning damage, safety procedures for loading explosive materials, etc. Over the years we have had many enquiries from ship agents who have been interested in addressing lightning protection and are very familiar with both the type of damage to be expected and the techniques needed to address any problem that might be encountered. While the priorities for each lightning protection project vary from ship to ship, one common feature for all projects is that in a task of this size an appropriate amount of analysis is required in order to assess the best course of action. In order to expedite this we recommend our so that we can give the matter the attention it deserves.

Given the wide range of potential issues with lightning protection of ships, it is not surprising that a common problem is that the agent does not understand how to define the most pressing concern. Ill defined Class regulations, use of ambiguous terms such as "lightning arrestor", and the widespread availability of devices with checkered histories do not help. To this end we offer a standard 20-hour consulting package that provides basic concepts, identifies prioritized issues, and develops the framework for an effective lightning protective process. Please us with questions or details.

features single component silicon bronze electrode Since a lightning protection system is intended to protect the hull and occupants, electronics is still vulnerable. Even in metal-hulled vessels damage to electronics systems is pervasive. We are now addressing this issue and can supply both parts and advice to minimize the risk. As an example, consider the following three tiers of protection that we recommend for catamarans: even in the Tier 1 system we include surge suppression on all wiring exiting the mast.

Since CFC is a conductor, but not a good one, it is difficult to deal with when designing a lightning protection system. Since we have not been able to design and test a reliable air terminal support for CFC masts, unfortunately we can no longer offer advice or devices for protection for them. Carbon fiber rigging is also a risk factor that we can do little about. Enveloping the interior with a conducting steel or aluminum hull still leaves all topsides transducers vulnerable. We deal with each metal vessel on a customized basis to identify the major vulnerabilities and then develop appropriate techniques and hardware to lower the risks of direct lightning attachment, formation of upward streamers, and damage from voltage surges on cables. Since current flow during lightning strikes appears to be via sparks, even below the waterline, we have developed the GStud ($200 each) , a silicon bronze immersed grounding electrode suitable for additional grounding near bow thrusters, hull transducers, keel-stepped masts, etc. Since these are embedded in a Marelon through-hull they are ideal for CFC hulls. Another product that now is available in silicon bronze is our Siedarc electrode in either a mushroom (SE-M-SiBr) or flush through-hull (SE-F-SiBr) @ $150. Add $30 for fairing. electrodes A recent report from one of our customers has shed some light on how our electrodes function - by forming sparks just above the water surface that neutralize the ground charge residing on the surface. See the discussion and animation on our page, or click here for a . Boat US has released their latest statistics for lightning claims. These show that not only are there twice the frequency of multihull claims, compared with monohulls, but also the average claim is 67% higher. See all the statistics . Also, we explain the higher strike frequency for catamarans in terms of their wider footprint. This leads us to conclude that you can increase your risk by 5-10 times when you anchor out, even if you are in a monohull! The October 2007 edition of Boat US's Exchange explains this novel concept. See the article . This concept has been incorporated into the National Fire Protection Association Lightning Protection Standard NFPA780-2011, and later versions, that are now . The watercraft section is Chapter 10 in the new (2011) version. Derivations for the new formulae regarding the use of metallic fittings in the system are published Also read in the May 2009 edition of MotorBoating. See our for pictures and descriptions of systems on all types of power and sail boats.

Principles Our approach to lightning protection is based solidly on observation and scientific theory.  The foundation was established in a published in 1991 in the prestigious  IEEE Transactions of Electromagnetic Compatibility.  As a result of this paper, subsequent renditions of standards published by ABYC and NFPA upgraded their recommended sizes for down conductors from #8AWG to #4AWG and noted that a ground strip is a more effective grounding conductor than a square plate of the same area. 

Another fundamental problem revealed in this scientific work was that a one square foot ground plate is "hopelessly inadequate" to prevent sideflashes in fresh water.This was not addressed in these earlier standard rewrites since, at the time, there was no obvious solution.  We can now solve this problem with our patented Siedarc electrodes that, when distributed around the hull, provide the multiple exit points needed for effective grounding. 

More recently, we have worked with the NFPA 780 technical committee to establish a new standard based on these new ideas, that is now published as Chapter 8 in the 2008 version of

This standard is based on the simple concept that a boat should be protected the same as a building, with the lightning conductors on the outside rather than through the middle of the boat.

As the ground attachment path for a 5-mile long spark carrying tens of kiloamperes, the protection system has the task of safely diverting this current around crew, sensitive electronics, and hull components.  However, even when the current is flowing in the water, voltage differences can cause sideflashes, both inside the boat and between the boat and the water. These present a shock hazard to the crew, produce overvoltage in electronics systems, and can blast holes through the hull.

Management of the sideflash problem is the fundamental issue in the design of an effective marine lightning protection system. page for a technical explanation of the underlying concepts and suggestions as to how these can be applied to a protection system.

Sideflash management is the objective An interesting feature of hull damage is the tendency for sideflashes to form around about the waterline.  Apparently either the water surface or the waterline itself causes charges to accumulate, usually on internal conducting fittings, and initiate sparks through the hull.  The effect is more pronounced in fresh water than salt.

Photo by Dave Edwards

In lightning protection circles, the conventional solution to a problem such as this is to add conductors where the damage is observed.In the above case this means placing lightning conductors through the hull at the waterline. Since it is impractical to install multiple ground plates in a hull, we developed the Siedarc electrode to provide the necessary exit terminals. This is effectively an air terminal near the water.In fact, each

 In order to investigate the effectiveness of this concept, we tested an electrode with a 10kV generator for both salt and fresh water at Kennick Inc. in St. Petersburg.  Even though 10kV is much lower than what would be expected during a lightning strike, we obtained results that clearly indicated the promising potential for the method and further elucidated the best mode of operation.  Specifically, in the photo below, with the electrode about 1/4" above the surface of salt water, a spark of about 15" in diameter was produced. Clearly the sparking is contained very close to the water surface, perhaps even above it, showing the importance of the surface for current dissipation.

In fresh water, the spark connected all the way to the sides of the container, about 12" away.  In contrast, when the electrode tip was immersed just below the water surface, a small (~ / ") glow was observed but no sparks.  The conclusion is that an electrode can generate a spark that is orders of magnitude longer than the spark gap in air when placed above the water surface.  Hence the optimum placement is just above the water surface. 

The animation below illustrates how we expect the Siedarc electrodes to function.  See our page for more details

Providing exit terminals around the perimeter of the hull is the key to an effective system design since, in addition to dispersing the current more uniformly around the boat, it also enables the lightning down conductors to be routed externally to all wiring and conducting fittings.  This is illustrated for a sailboat on the right.  The lightning conductor from mast base connects to both the chain plate and the loop before passing down to a daisy-chain Siedarc electrode just above the waterline, and from there via an immersed HStrip to a keel bolt (and base of a keel-stepped mast).  Siedarc electrodes at  bow and stern provide more exit terminals from the loop to the water.  This geometry is mirrored on the port side, as indicated by the dashed lines.  That is, there is a total of two HStrips and six Siedarc electrodes.  Thus a conducting grid covers the interior of the boat and a total of eight exit terminals are distributed over the hull near the waterline.  For a keel-stepped mast, make another connection from the mast base to both the keel bolt and the HStrips.

Guiding the current on the outside rather than through the middle of the boat minimizes shock risk and emi.  In addition, a bonding loop around the boat at about deck level equalizes potentials, provides additional paths for current flow, and can be used for bonding conducting fittings.  In a major departure from the status quo, NFPA (the National Fire Protection Association) has recently revised their watercraft standard (NFPA 780 Ch.8) to include the concepts of a loop conductor, external down conductors, and perimeter grounding electrodes.   See our page for details.  With this new system the conductor layout more closely mirrors that found on the typical lightning protection system on a building.  We call this system of external lightning conductors and peripheral exit terminals the ExoTerminal protection system. In the photo below, we have shown where additional (internal) lightning conductors, grounding terminals, and air terminals were installed to fabricate this type of system.

Products & services We can provide all of the components needed in a marine lightning protection system - air terminals, connections, grounding strips and Siedarc electrodes. See our page for details.

We also offer for:

Contact
3215 NW 17th Street
Gainesville
Florida 32605  
     
  • Yachting World
  • Digital Edition

Yachting World cover

Yacht lightning strikes: Why they cause so much damage and how to protect against them

Yachting World

  • August 27, 2020

A lightning strike may sound vanishingly unlikely, but their incidence is increasing, and a hit can cause severe damage costing thousands of pounds, as well as putting an end to a sailing season, writes Suzy Carmody

lightning-strikes-yacht-credit-Image-Reality-Alamy

Lightning strikes of boats are still fairly rare – but are on the increase. Photo: Image Reality / Alamy

Pantaenius handles more than 200 cases of lightning damage every year. “Over the past 15 years, the total number of such loss events has tripled in our statistics. The relative share of lightning damage in the total amount of losses recorded by us each year is already 10% or more in some cruising areas such as the Med, parts of the Pacific or the Caribbean,” added Pantaenius’s Jonas Ball.

Both UK and US-based insurers also report that multihulls are two to three times more likely to be struck by lightning than monohulls, due to the increased surface area and the lack of a keel causing difficulties with adequate grounding. Besides increased likelihood of being hit, the cost of a strike has also risen enormously as yachts carry more networked electronic devices and systems.

lightning-strikes-yacht-CAPE-index-forecast

The CAPE index measures atmospheric instability and can be overlaid on windy.com forecasts

Avoiding lightning strikes

The only really preventative measure to avoid lightning is to stay away from lightning prone areas. Global maps of lightning flash rates based on data provided by NASA are useful to indicate areas of more intense lightning activity. They show that lightning is much more common in the tropics and highlight hotspots such as Florida, Cuba and Colombia in the Caribbean, tropical West Africa, and Malaysia and Singapore in south-east Asia.

Unfortunately, many of the most popular cruising grounds are located in tropical waters. Carefully monitoring the weather and being flexible to changing plans is an essential part of daily passage planning during the lightning season in high-risk areas. CAPE (Convective Available Potential Energy) is a useful tool for indicating atmospheric instability: you can check the CAPE index on windy.com (see above) as part of your lightning protection plan.

Protection against lightning strikes

Yachts that had no protection when lightning struck often experience extensive damage. The skipper of S/V Sassafras , a 1964 carvel schooner, reports: “Most of the electronics were toast. Any shielded wiring or items capable of capacitance took the most damage: isolation transformer; SSB tuner; autopilot and N2K network Cat 5 cables.”

Article continues below…

A moored yacht gets zapped by a bolt of lightning Pic: APEX News and Pictures

What is a Spanish Plume? Thunderstorms, lightning and downdrafts explained

Earlier this summer we saw considerable thunderstorm activity over the UK and Europe, resulting in flooding and some serious injuries.…

sailing-in-lightning-strikes-credit-brian-carlin-team-vestas-wind-volvo-ocean-race

Expert sailing advice: How to handle a lightning strike on board

Lightning is the thing that scares me the most at sea. Having never experienced a lightning strike I think this…

The owner of Matador of Hamble , a Rival 41, recalls the effects of their strike: “The extent of the damage was not immediately obvious. For days afterwards anything with a semi-conductor went bang when we turned it on.”

The crew of Madeleine , a Catana 42S catamaran, had a similar experience. “We were struck in Tobago but only discovered the electrical damage to the port engine when we reached St Lucia and it was in the Azores that we found out the rudder post was broken and we had lost half our rudder.”

It therefore seems prudent that in lightning prone areas a protection system should be implemented where possible to protect the boat, equipment and crew. As a first step analysing the boat and the relative position of all the main metallic fittings can often reveal a few safe places to hide and places to avoid. Areas such as the base of the mast, below the steering pedestal and near the engine have the highest risk of injury.

lightning-strikes-yacht-steel-stays-credit-Wietze-van-der-Laan-Janneke-Kuysters

Stays on a steel boat are attached directly to the steel hull. Photo: Wietze van der Laan / Janneke Kuysters

In terms of minimising the effect of a strike, one temporary method to limit the damage is to direct the current outside the boat using heavy electrical cables attached to the stainless steel rigging. With the other end of the cable immersed in the ocean, this provides a conductive path from the masthead to the ground.

The main flaw in this plan is that an aluminium mast has much greater electrical conductivity than stainless steel and is a more likely pathway to the ground. This system also requires adequate copper to be in contact with the seawater to discharge the current.

Other temporary measures include disconnecting radar and radio aerial cables, putting portable electronic items in the oven or microwave as a Faraday cage, turning off all the batteries or nonessential electronic equipment if at sea, or in a marina unplugging the shore power cord. All these procedures rely on someone being on board with several minutes warning before a strike to drop the cables over the side and turn off/disconnect and unplug.

lightning-strikes-yacht-cable-conductor-credit-Wietze-van-der-Laan-Janneke-Kuysters

Cable used as a down conductor from the shrouds on a catamaran. Photo: Wietze van der Laan / Janneke Kuysters

Posting an ‘Emergency Lightning Procedures’ card in a central location of the boat showing where to stand and what quick preparations to take is a simple first step.

Permanent lightning strike protection

In a thunderstorm, molecular movement causes a massive build up of potential energy. Once the voltage difference overcomes the resistance of the airspace in between, invisible ‘channels’ form between the base of the clouds and tall objects like masts, providing a path for a lightning strike to discharge some of the accumulated electrical energy. There will be less damage to a vessel if the discharge is contained in a well-designed lightning-protection system.

Lightning rods or air terminals installed at the top of the mast connected to an external grounding plate on the hull, via an aluminium mast, provide a permanent low impedance path for the current to enter the water. On boats with timber or carbon masts a heavy electrical cable can be used as a down conductor.

If not installed during production, a grounding plate can be retrofitted during a haul out. On monohulls a single plate near the base of the mast is adequate. A ketch, yawl or schooner requires a vertical path for each mast and a long strip under the hull between the masts, whereas catamarans usually require two grounding plates to complete the path to the water.

The current from a lightning strike is dissipated primarily from the edges of the plate, so the longer the outline the better. Warwick Tompkins installed a lightning protection system designed by Malcolm Morgan Marine in California on his Wylie 38 Flashgirl :  “Two heavy copper cables run from the foot of the mast to the aluminium mast step, which was connected to a copper grounding plate on the outside of the hull via ½in diameter bronze bolts.”

The grounding plate was an eight pointed star shape. “Some liken it to a spider.” Warwick says, “And the very minimal electrical damage we experienced when struck was directly attributable to this spider setup.”

lightning-strikes-yacht-grounding-plate-credit-Malcolm-Morgan-Marine

A copper ‘X’ grounding plate, used on boats that have a fin keel some distance aft of the mast. Photo: Malcolm Morgan Marine

Morgan adds: “Any cables associated with lightning protection should be routed away from other ship’s wiring wherever possible. For example, if the navstation electronics and main switchboards are on one side of the vessel, the lightning protection cables should be routed on the opposite side.”

An internal bonding circuit connects the major metal objects on a boat to the grounding plate via bonding cables. This can help prevent internal side strikes where the current jumps between objects in order to reach ground.

Morgan explains: “As modern boats are becoming increasingly complex careful consideration is required to ensure the bonding system is designed correctly. There are five possible grounding systems on a vessel (lightning protection, SSB radio ground plate, bonding for corrosion, AC safety ground, and DC negative) and all need to be joined at one common point and connected to the external grounding plate.”

lightning-strikes-yacht-keel-damage-credit-GEICO-Boat-US-Marine-Insurance

This strike exited through the keel, blowing off the fairing and bottom paint. Photo: GEICO / BoatUS Marine Insurance

Surge protection

Yachts anchored close to shore or on shore power in a marina are susceptible to voltage surges during a thunderstorm. If lightning strikes a utility pole the current travels down the electricity cable looking for ground. It can enter a vessel through the shore power line or can pass through the water and flashover to a yacht at anchor.

Surge-protective devices (SPD) are self-sacrificial devices that ‘shunt’ the voltage to ground. They reduce the voltage spikes eg a 20,000V surge can be diminished to 6,000V but the additional current can still be enough to damage sensitive electronics. Therefore fitting ‘cascaded’ surge protection with several SPDs in line on critical equipment is a good idea.

High-tech solutions

Theoretically, if a lightning dissipator bleeds off an electrical charge on the rigging at the same rate as it builds up it can reduce or prevent a lightning strike. Lightning dissipators such as ‘bottle brushes’ are occasionally seen on cruising boats, though these are relatively old technology. Modern dissipators feature a 3⁄8in radius ball tip at the end of a tapered section of a copper or aluminium rod. The jury is out on their effectiveness.

A more high-tech solution is Sertec’s CMCE system, which claims to reduce the probability of a lightning strike by 99% within the protected area. The system has been widely installed on airports, stadiums, hospitals and similar, but has now been adapted for small marine use (and may reduce your insurance excess).

Arne Gründel of Sertec explains: “The CMCE system prevents a lightning strike by attracting and grounding excess negative charges from the atmosphere within the cover radius of the device. This prevents the formation of ‘streamers’, and without streamers there is no lightning strike.”

lightning-strikes-yacht-Sertec-CMCE-dissipator

A Sertec CMCE marine unit, designed to dissipate lightning

  • 1. Avoiding lightning strikes
  • 2. ‘A lightning strike caused £95,000 of damage to my yacht’

lightning protection sailboat mast

  • News & Views
  • Boats & Gear
  • Lunacy Report
  • Techniques & Tactics

lightning protection sailboat mast

MARINE LIGHTNING PROTECTION: Getting Z-Z-Z-Zapped on a Sailboat

' src=

I have to admit I don’t normally think about this too much. As is true of many sailors I suspect, I have subscribed to the philosophy that lightning and its effects are so random and poorly understood that you can get royally screwed no matter what you try to do about it. Which is a great predicate, of course, to going into denial and doing nothing at all. But the death in Florida last summer of Noah Cullen , a most promising young man who presumably was killed in a lightning strike while out singlehanding on his pocket cruiser, got me pondering this in a more deliberate manner. On doing some research, I found there are some hard facts out there that are well worth knowing.

Much of what we tend to learn about lightning is anecdotal, which mostly serves to make it seem more mysterious. I, for example, have never been struck by lightning, but I did once cut through some severe thunder squalls in the Gulf Stream in a grounded fiberglass boat and saw a bolt of lightning the size of a large tree trunk flash straight into the water just a few yards behind us. I can’t begin to tell you why it didn’t hit our nice 55-foot aluminum mast, and ever since then I’ve believed a strike is pretty much an act of God. It’s either going to get you, or not, and there’s nothing you can really do about it.

I have met a number of sailors who have been struck by lightning, mostly in grounded boats, and in every case they told me they lost all their electronics. So I have also always assumed there is nothing you can really do to protect installed electronics from a lightning strike.

But you should forget all the anecdotes you ever heard, at least temporarily, and think about the following:

Likelihood of a strike: It’s probably much higher than you like to think. One source states that a sailboat with a 50-foot mast will on average be struck once every 11.2 years. According to insurance data, the general average for all boats is about 1.2 strikes per 1,000 boats each year.  The average bill for damage is around $20,000. Most strikes are on sailboats (4 strikes per 1,000 sailboats each year). And these are likely lowball numbers, as it seems many lightning-strike victims are not insured or do not report the strikes to their insurers. According to one independent survey, unreported strikes could be as high as 50 percent of the total.

Location is also a big factor. Some areas, including very popular cruising grounds like Florida or Chesapeake Bay, are much more lightning-prone than others, and you are obviously much more likely to get struck when sailing within them. The overall average for reported lightning strikes on boats in Florida, for example, is 3.3 strikes per 1,000 boats each year, nearly three times the national average.

Map showing lightning strike probabilities around the world. The higher the number, the higher the probability

Interestingly, catamarans overall apparently are struck twice as often as monohulls. Could this be because they are effectively twice as much boat???

Preventing a strike: It really isn’t possible. There is no technology that can positively keep your boat from being hit. There’s seems to be little evidence, for example, that those silly little masthead bottle brushes some people put up are good for anything.

Spectacular image of a sailboat getting hit in Rushcutter’s Bay in Sydney Harbor, Australia, with inset images showing damage to the mast. Lots of other targets with masts around, so why did the bolt hit this one boat?

Limiting damage: This is where the action is. To paraphrase one writer: it is a fallacy to think in terms of “lightning protection.” What you want is “lightning control.” Which definitely means grounding your boat! An ungrounded boat is much more likely to suffer potentially disastrous damage when struck (i.e., holes in the hull, dead crew, etc.). A boat in fresh water is also much more vulnerable, because fresh water doesn’t conduct electricity as well as salt water. An ungrounded boat in fresh water is most vulnerable of all. If you’re on one of these during a strike, you may as well just forget about it and put a cap in your head.

Typical exit damage around an anchor well drain on a fiberglass boat. Hull damage just above the waterline is not at all unusual

Grounding your boat: The old school notion of leading a big copper strip from the base of your mast in a straight line to a single grounding plate on your hull is the process of being discarded in favor of a more sophisticated technique that connects the mast as primary conductor to a network of dissipating electrodes installed just above a boat’s waterline, the idea being in effect to make all of the boat’s hull something like a Faraday cage, so that the equipment and people within will be safer.

Example of a more modern grounding system

Note (I was particularly gratified to learn this): a metal hull is indeed a great ground, and the fact that it is painted, or coated in epoxy, or whatever, doesn’t change this. But you can still suffer significant damage on a metal boat!

Bonding: You and the gear on your boat are more likely to survive a strike without damage if the major bits of metal on your boat are bonded to the grounding system. This reduces the likelihood of dangerous side flashes. (It does, however, create complications with respect to the potential for galvanic corrosion on a boat.)

Saving electronics: First of all, stowing handheld electronics (or any disconnected electronics) in your oven will protect them during a strike. Just remember to take them out again before using the oven!

More importantly, you can protect installed electronics using various individual surge protectors, fancy spiral wiring, and other techniques I’m not going to pretend to understand, much less explain. See the sources below for more details.

Your personal safety: This should be most important, right? You want to stay off the helm if possible, stay below, stay dry, and don’t touch any big pieces of metal. All of which are easier said than done when you’re in the middle of a big squall! It would seem the most prudent tactic is severely reduce sail, or take it all down, pop the boat on autopilot, and get below well in advance of and after a thunderstorm.

Lightning and Sailboats : Academic paper published by Ewen M. Thomson, currently recognized as the most well-informed go-to guy on this subject.

Marine Lightning Protection : Website for a business run by Ewen Thomson (see above), who is a pioneer in modern cage-style boat-grounding techniques. Thomson will ground and bond your boat for you, if you like, but there’s also lots of useful raw info in here.

Lightning Survey Results : Discussion re results of a small independent online lightning-strike survey conducted by a cruiser who owns a power-cat named Domino . Very informative.

Considerations for Lightning Protection : Conclusions reached post-survey by the owner of Domino , referenced above.

Lessons in Lightning : Ocean Navigator article by a cruiser in an aluminum boat who was struck by lightning in the Baltic. Of particular interest to those (like myself) who own aluminum boats.

There are lots of other resources out there, but these four links are a very good place to start. You’ll find many other valuable sources just by reading through these articles and following the links within.

Related Posts

Thunder squall

STORM PORN: Casco Bay Thunder Squall

' src=

We were hit by lightning in a fast moving front off Newfoundland many years ago (before gps). All the electronics were fried! The binnacle must have been demagnetized as it hopelessly spun in circles, giving us only a hand sighting compass to steer by. The smell of burned wire insulation in boat was overpowering. Luckily this is a rare occurrence and for the most part just bad luck!

' src=

@Robert: Interesting. In Bermuda once I met a tall ship, steel hull, that had been struck by lightning, and as a result the whole ship was magnetized. Which also kept their compasses from working properly. They were on their way to Norfolk, Virginia, to get degaussed.

' src=

I feel obligated to take issue with a fair bit of what’s been said above. Without writing a textbook, the following is best seen as “almost correct”. If you consider that the sky has a positive electrical charge and the sea a negative charge, grounding the boat and the mast gives them a negative charge. Hence as far as the lightning is concerned, the bonded mast raised the local sea level to mast top height. Lightning will tend to bridge the narrowest gap with the greatest electrical charge difference – so by grounding boat and mast, you have made them MORE vulnerable to lightning strikes, not less. In other words, NOT grounding the boat and mast will REDUCE your chances of being struck.

Tying an earth system into the keel bolts is not likely to result in loss of the keel, but it sure does constitute trying your best to do so. If the bolts are electrically weak they may act as a fuse and “blow” during a strike.

Making a Faraday shield form shown above does help mitigate the effects of the strike compared to a simple bonding of the mast to the keel in many situations, but it’s over-rated. In a big strike, lightning will try to follow a straight path and the energy contained in such a strike is often too great for a simple system to be effective. And it needs to be understood that either method makes the strike a whole lot more likely to occur.

A grounded mast does offer a degree of protection to a non-bonded electrical system in the boat underneath. There is what’s termed a “cone of protection” extending downwards at 30 degrees from the top of the mast. This is the standard system used in telecommunications.

The best protection you can have is to park your ungrounded wooden boat with a wooden mast and an electrical system isolated from the sea, right next to a grounded metal boat with a big aluminium mast. In the photo above depicting the Sydney harbour yacht being struck, the question was posed “why did the bolt hit this one?” The answer is that it was best grounded boat in that area.

@Bryan Tuffnell while part of what you say is true that a grounded boat is more likely to be struck the catch is that it will do less damage if struck where as a boat not grounded is less likely to be struck if it ever is you will have significantly more damage

Maybe, but quite likely not. The only way to offer lightning protection is to place a grounded lightning target above the mast, but electrically isolated from the mast and every other part of the boat. The grounding is completely independent of the mast, rigging, interior, electrical system, and above waterline areas of the hull. The idea is that this attracts the lightning and provides a low impedance path to ground, without drawing the charge into any part of the boat or its contents. Using this strategy one does not ground the mast, hull, rigging, etc. This is the only strategy to apply if one insists on lightning protection.

' src=

the sky has a positive electrical charge and the sea a negative charge

Its the other way round. When polarity builds up the negative charge is at the cloud base, and the positive at the sea surface. [quote=Bryan TuffnellNOT grounding the boat and mast will REDUCE your chances of being struck[/quote] Wrong – the enormous voltage actually doesn’t care if you’re grounded or not. Given the fact that the boats surface will always be wet or moist in some way it is “grounding” enough to raise the sea level polarity up to the mast top. The only thing proper grounding does is trying to guide the current of a charge in a way that does the least harm.

Not necessarily in the first case, and generally not true in the second… the polarity of lightning is variable, and there are countless examples of nearby strikes to ungrounded boats. Obviously if lightning didn’t care of you were grounded or not, lightning conductors wouldn’t work.

As far as doing the least harm goes, grounding the mast is about the worst thing you can do, particularly if you have grounded electrical items onboard.

' src=

Our boat (20′ cruiser) has no grounding system. Is it foolish to think that the method where a set of jumper cables is attached to mast and other end dropped overboard, might be a good emergency strategy if caught in elec storm?

' src=

what a topic indeed. to protect or not to protect, that is the question. simply do you use a brush type or spike type diffuser on your mast, do you protect for side strikes, or stay central with mast bonding.. im trying to find an answer like us all and so far , the answers all differ..

Leave a Reply Cancel Reply

Save my name, email, and website in this browser for the next time I comment.

Please enable the javascript to submit this form

lightning protection sailboat mast

Recent Posts

  • MAINTENANCE & SUCH: July 4 Maine Coast Mini-Cruz
  • SAILGP 2024 NEW YORK: Lifestyles of the Rich and Famous
  • MAPTATTOO NAV TABLET: Heavy-Duty All-Weather Cockpit Plotter
  • DEAD GUY: Bill Butler
  • NORTHBOUND LUNACY 2024: The Return of Capt. Cripple—Solo from the Virgins All the Way Home

Recent Comments

  • Charles Doane on SAILGP 2024 NEW YORK: Lifestyles of the Rich and Famous
  • Pete Hogan on SAILGP 2024 NEW YORK: Lifestyles of the Rich and Famous
  • Thanks, Dr_ma c k(@ y a h o O )C o M on THE INVASION OF ANGUILLA: A Comedy of Errors, Caribbean Style
  • John Stone on DEAD GUY: Donald M. Street, Jr.
  • Charles Doane on DANIEL HAYS: My Old Man and the Sea and What Came After
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • September 2022
  • August 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • February 2013
  • January 2013
  • December 2012
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • February 2012
  • January 2012
  • December 2011
  • November 2011
  • October 2011
  • September 2011
  • August 2011
  • February 2011
  • January 2011
  • December 2010
  • November 2010
  • October 2010
  • September 2010
  • August 2010
  • February 2010
  • January 2010
  • December 2009
  • October 2009
  • Boats & Gear
  • News & Views
  • Techniques & Tactics
  • The Lunacy Report
  • Uncategorized
  • Unsorted comments

Return to Peterson Cutter Lightning Protection Page

  • MarketPlace
  • Digital Archives
  • Order A Copy

Ocean Navigator

Protect Your Boat from Lightning

A zinc “fish anode” hanging in the water and connected to the boat’s bonding system helps to prevent corrosion damage from shore power.

If there is anything equally as scary to an ocean sailor as falling aboard, it is the highly unlikely yet still extant possibility of being struck by lightning at sea. Like a giant battery in the sky, the negative post on that wispy, amorphous blob of a cloud is always looking for the shortest path to ground, which in this case means the highly conductive saltwater on which you are sailing—or the highest conductive point on your boat.

So there you are sailing along, listening to Jimmy Buffet on the stereo, blissfully unaware of the big cloud’s intentions as it aims its spear of lightning at the highest electrically charged point on your vessel, which we hope is not you or a fellow crew member. Fortunately, the odds of your being struck by lightning are slim, particularly on the West Coast. The odds are significantly higher on the East Coast, particularly in Florida and on Chesapeake Bay, yet still minimal. A full 33 percent of all lightning insurance claims in the U.S. are from the Sunshine State, where the lighting strike rate is 3.3 vessels per thousand as opposed to an average 1:1,000 throughout the rest of the country.

As you may well imagine, the majority of boats hit by lightning are sailboats and for an obvious reason: aluminum masts offer a close point of contact from the cloud and a quick ground path through ocean water splashed on the deck and hull. If your deck shoes are soaked with saltwater while you are ambling along a side deck, you could become a human light bulb for a tiny fraction of a second. In most cases of boats hit by lightning, crew are not directly affected, and of those who are, roughly 90 percent survive.

Notwithstanding the low chance of being hit by lightning and the high survival rate of lightning attacks, it is imperative that we as offshore sailors do everything possible to prevent damage in the event of a lightning strike. Fortunately, a number of manufacturers offer devices to protect our valuable onboard electronics, if not ourselves, from the ravages of lightning.

The first step in protecting your boat from lightning is bonding all thru-hulls with copper wire. This includes all bronze mushroom fittings for engine raw water intake, deck drains, standing rigging, windlass, bow roller and so on. The more dissipation surface you expose to a lightning strike, the less likely your vessel and electrical system are to incur serious damage.

A zinc hull anode bonded to a vessel’s thru-hulls and rigging helps to prevent serious lightning damage.

You will also need to install a grounding plate, or zinc anode, to the bottom of the hull and connect the grounding system to a bolt on the grounding plate inside the vessel. Regardless of whatever other device you install to dissipate or absorb lightning energy, the traditional thru-hull grounding plate is still a necessary yet inexpensive device to save protect your vessel. Every time you haul out your vessel for bottom painting, be sure to exchange the worn-out chunk of zinc for a new one. 

The traditional lightning protection device for boats is the old-fashioned lightning rod, which can still be found on the mastheads of many yachts. Forespar, L-Com and Rohn Products are some of the market leaders in this traditional form of lightning protection. Priced at under $100, even the humblest of sailors can enjoy some degree of protection from lightning strikes on their vessels.

A more recent variation of the masthead rod is a lightning static dissipater, which looks like a metallic dust broom mounted upside down on a sailboat mast. As comical as they may look, those frizzy lightning dissipaters could save your onboard electronics and conceivably your life if installed correctly.

Mounted next to the masthead light, a dissipater is, first of all, the highest point of contact for potential lightning. Because the thin wire strands are so thin and numerous, the surrounding air absorbs the electrical charge immediately, saving everything below that point from damage.

You can find the Forespar Lightning Master for under $200 online, and installation is fairly easy. First of all, since the device is self-contained, it is not connected to any cable leading down to a submerged lead or anywhere else. Installation involves little more than a small stainless steel bracket on the masthead. The Lightning Master may also be mounted on the bridge of a large motorboat.

A more sophisticated device used to protect a boat’s electrical system and sensitive electronics is a microprocessor-controlled shunt, which immediately shorts out excess amperage, drawing the energy into itself and out to a large load where the electrical impulse dissipates when lightning strikes. By absorbing the huge surge of electricity in a fraction of a second, the shunt prevents current from reaching sensitive electrical and electronic equipment.

EMP Shield, named for “electromagnetic pulse,” is an industry leader in lightning control technology, manufacturing shunts for business, home and vehicle/vessel. The shunts are designed for specific applications and anticipated amperage levels, whether they are engine and generator power cables, radio and navigation systems, solar panels or other sensitive fixtures.

EMP Shield’s line of vehicle and vessel shunts include 12V/24V shunts to protect the majority of large systems on your vessel, while their inline VHF antenna shunts are small enough to be mounted anywhere along the antenna cable and tucked away neatly inside the mast or below decks.

For a device capable of protecting larger systems, consider one of EMP’s three-phase models designed to protect starter motors, generators and large battery banks. Incredibly, most of EMP Shield’s shunts are priced under $500, well within the budget of the humblest of offshore and coastal cruisers.

Protecting vessel, crew and sensitive onboard systems from lightning strike will give you ease of mind while you are underway, particularly in tropical regions where lightning is common. Make sure your vessel’s thru-hulls and standing are bonded, and consider investing in a microprocessor-controlled shunt for added protection against lightning. Knowing your vessel is safe from lightning strikes will give you ease of mind while underway or at anchor in lightning-prone areas. n

Logo

Please verify you are a human

Access to this page has been denied because we believe you are using automation tools to browse the website.

This may happen as a result of the following:

  • Javascript is disabled or blocked by an extension (ad blockers for example)
  • Your browser does not support cookies

Please make sure that Javascript and cookies are enabled on your browser and that you are not blocking them from loading.

Reference ID: 70222389-4588-11ef-b491-0afb2d6f289c

Powered by PerimeterX , Inc.

BoatUS Boating Association Logo

Service Locator

  • Angler Endorsement
  • Boat Towing Coverage
  • Mechanical Breakdown
  • Insurance Requirements in Mexico
  • Agreed Hull Value
  • Actual Cash Value
  • Liability Only
  • Insurance Payment Options
  • Claims Information
  • Towing Service Agreement
  • Membership Plans
  • Boat Show Tickets
  • BoatUS Boats For Sale
  • Membership Payment Options
  • Consumer Affairs
  • Boat Documentation Requirements
  • Installation Instructions
  • Shipping & Handling Information
  • Contact Boat Lettering
  • End User Agreement
  • Frequently Asked Questions
  • Vessel Documentation
  • BoatUS Foundation
  • Government Affairs
  • Powercruisers
  • Buying & Selling Advice
  • Maintenance
  • Tow Vehicles
  • Make & Create
  • Makeovers & Refitting
  • Accessories
  • Electronics
  • Skills, Tips, Tools
  • Spring Preparation
  • Winterization
  • Boaters’ Rights
  • Environment & Clean Water
  • Boat Safety
  • Navigational Hazards
  • Personal Safety
  • Batteries & Onboard Power
  • Motors, Engines, Propulsion
  • Books & Movies
  • Communication & Etiquette
  • Contests & Sweepstakes
  • Colleges & Tech Schools
  • Food, Drink, Entertainment
  • New To Boating
  • Travel & Destinations
  • Watersports
  • Anchors & Anchoring
  • Boat Handling
  • ← Safety & Prevention

Modern Lightning Protection On Recreational Watercraft

Advertisement

While you can't prevent a strike, there's a lot you can do to mitigate — or even prevent — damage.

Lightning over the marina

A thunderstorm passing over a marina has the potential to cause expensive damage.

The recent advances in electrical and electronic systems have revolutionized recreational boating. Vessel operations have been simplified and the boating experience enhanced due to the integration of electronics into almost every onboard system, from navigation and communications to propulsion and maneuvering. Complex engine electronics known by various names including Engine Control Unit (ECU) and Engine Control Module (ECM) have increased performance and reduced emissions on modern engines. However, these advances have come at a cost. Many 21st-century boaters depend on electronic systems to navigate and maneuver their boats, and many modern engines will not function if their electronics are compromised. That makes modern mariners and their boats vulnerable to a lightning strike that damages these now mission-critical systems, potentially leaving the boat dead in the water without navigation or communications equipment.

Unfortunately, sensitive electronics on boats have become increasingly vulnerable to lightning strikes, yet lightning-protection systems have not kept pace. It's not that there haven't been significant advances in lightning science since Benjamin Franklin developed his theories on how to protect barns and livestock. The National Fire Protection Association, Underwriters Laboratories, and industries which are significantly at risk from lightning, such as telecommunications, wind generation, aviation, and fuel, have achieved consensus on the science of lightning protection and have embraced new protocols and practices. But the recreational boating industry has been slow to adapt those changes to the marine environment. There are at least three reasons for that.

Fuzzy lightning dissipator

There is no evidence from independent laboratories that these fuzzy lightning dissipators prevent strikes.

First, corrosion and motion on board boats, as well as limitations with respect to weight, space, and geometry, make lightning protection more challenging than in shoreside installations. Second, the mandate of the standards body for the industry, the American Boat & Yacht Council (ABYC), focuses on protecting life; protecting equipment has been a lower priority. Third, there has been strong disagreement between professionals about the best way to mitigate damage in a lightning strike and precious little data to support one point of view over another. The sometimes-raucous debate surrounding certain unproven lightning- protection devices and such theories as "fuzzy" lightning dissipation terminals and early-streamer emission terminals, as well as unorthodox placement of grounding terminals (a.k.a. grounding plates), have sharply divided the recreational boating technical community, all of which makes consensus on lightning protection difficult, if not impossible.

This lack of guidance is frustrating for those with boats at risk. While a runabout in Portland, Oregon, or a daysailer in Portland, Maine, may have little risk of lightning damage (see " Striking Lightning Facts "), larger vessels (particularly sailboats) in such lightning-prone areas as the Chesapeake Bay or Florida absolutely should be protected using the best technology available. Any marine-insurance adjuster can attest that the potential for loss on these vessels can be great. The National Fire Protection Association made some fundamental changes to the watercraft chapter of NFPA 780: Standard for the Installation of Lightning Protection Systems in 2008 that incorporate the thinking that has become accepted in other industries. While the recommendations in NFPA 780 have yet to be embraced by the recreational boating industry as a whole, understanding what it says — and why — may assist you in developing a lightning-protection plan for your boat.

Lightning 101

The simplest way to think of a lightning strike would be as a short circuit between the cloud and the earth. The earth and an active thundercloud have either a positive or a negative polarity with respect to each other, just like battery connections that can arc if they are not separated by a long enough air gap. Whether the positive charge is in the cloud or on the water may have great importance to a physicist, but matters little to the cow in the barn or the VHF radio antenna on the mast.

The important point is that the earth (or in our case, the water) contains an unlimited supply of positive and negative charges; it is the thundercloud that induces the charge concentration in the water. For example, if a large concentration of negative charge coalesces in a storm cloud over the ocean, a large concentration of positive charge is drawn to the very top surface of the water directly beneath it. (Opposites attract.) Since air is a good insulator, no electricity will flow between the cloud and the water unless the airborne charge loses altitude, moves close enough to the surface of the water, and the lightning jumps the gap. If an electrically conductive material, such as an aluminum tuna tower or mast, stainless steel rigging, or a long vertical copper wire, comes between the cloud and the water, then the gap that must be jumped becomes shorter. The boat short circuits the voltage, much like a wrench across battery terminals.

Because boats are built from electrically conductive components installed between the water and the areas aloft (masts, rigging, antennas, towers, support structures, electrical wiring), a lightning strike is inevitable if an active thundercloud containing electrical charges passes overhead at a low enough altitude. How much damage the lightning strike does to the boat depends upon how easily the electrical energy from the strike can find its way through the boat to ground. There will be a lot less damage if the discharge is contained in a well-designed lightning-protection system than if it takes a detour through the ship's wiring and sensitive electronics on its way out of the boat.

This is a basic concept that surprises many boaters: A lightning-protection system is not designed to prevent a lightning strike, but rather to provide a safe discharge path for the lightning. This is the only viable solution for lightning protection (short of going back to wooden ships, kerosene lamps, and sextants). The technology to prevent lightning strikes does not yet exist.

Still, there are devices out there claiming to do just that. Lightning dissipaters (LDs) look like metal bottle brushes or frayed paint brushes and are installed on the top of the mast. The hypothesis is that the numerous conductive points on the LDs safely dissipate accumulated charges so the lightning strike will not occur. As far as I am aware, not a single independent testing laboratory has confirmed the effectiveness of lightning dissipaters as lightning preventers.

Early-streamer emission (ESE) terminals have also gained traction in some circles. Fancy lightning rods often shaped like a torpedo that usually come with electronic circuitry, these are supposed to attract lightning better than a standard lightning rod (also called an air terminal), to ensure that the lightning strikes the grounding path rather than what is being protected. Once again, I am not aware of any independent studies validating the effectiveness of these devices.

Lightning-protection systems actually function by acting as the "best" short circuit between the cloud and the water, one designed to lead the lightning harmlessly to ground. The system accomplishes this in two ways: by attracting lightning away from more destructive pathways between cloud and ground, and by sending the charge around, instead of through, what it is protecting.

The first concept has traditionally been known as the "cone of protection" or the area protected by an air terminal from a strike. Traditionally, the cone of protection has been thought to include a circle centered on the base of the air terminal whose radius equals the height of the terminal and to extend from the top of the air terminal to the ground at a 45 degree angle. In fact, the length of the final jump that lightning takes before striking the air terminal is about 30 meters. Recent research suggests that the actual area protected can be defined by an imaginary sphere with this radius that is "rolled" up to the air terminal. All objects inside the imaginary sphere will not be protected by the air terminal, which means the area protected often differs in size and shape from the cone of protection model. Modern lightning protection for airports and power plants use the rolling sphere method and place air terminals so that the areas of protection overlap and include any sensitive equipment that would be damaged by a strike.

The second concept will be familiar to many as the Faraday cage. As early as 1836, Michael Faraday discovered that objects surrounded by metal were protected from lightning (explaining why we are safe from lightning while in our cars). Many old-school sailors have used Faraday's discovery to good purpose when they placed sensitive electronics in the oven during a lightning storm (with the oven off, of course.) This practice can be significantly updated by placing sensitive electronics in the microwave oven!

21st Century Lightning Protection

Benjamin Franklin pioneered lightning protection in 1749 with the invention of the lightning rod, and, when it comes to recreational boats, until recently, little has changed. Under his model, the lightning is attracted to the lightning rod (air terminal), which then passes the lightning current harmlessly to a submerged metaevent secondary flashes from these metal structures.

Lightning protection sailboat

Air Terminals are shown in green; grounding plates with down, side flash, and equalization conductors in yellow; loop conductors in red; and catenary conductors in blue.

NFPA 780 draws much from the old-school system while incorporating improvements based on the modern understanding of lighting protection. While solutions will vary depending on the boat, let's talk about the basics.

Air terminals (lightning rod or Franklin rod) should be installed at the highest points of masts, towers, etc. On a sailboat a single air terminal could be bolted to the mast; on a sportfish it could be bolted to the tower and made to look like an antenna. This should be higher than anything you are trying to protect from a lightning strike, such as a VHF antenna.

A heavy electrical conductor should be connected from each air terminal directly down to a grounding point on the hull. In the case of a sailboat's mast, aluminum is a good conductor, so no separate wiring run needs to be installed. (Note that the wiring inside of the mast will be protected due to the Faraday effect.) An aluminum tower will work the same way on a sportfish so long as the legs are connected to an adequate grounding plate. Where no aluminum structure exists to act as a down conductor, a 4 AWG wire or larger should be run from the air terminal to the grounding plate in as straight a run as possible and well separated from other wiring.

The grounding point should be a corrosion-resistant metal plate installed on the exterior of the hull below the waterline. The plate should be at least one square foot in size and at least 3/16 of an inch thick. Research shows that most of the electrical discharge occurs along the edges, so a long, narrow plate, especially one with grooves cut in it, will be most effective at dispersing the charge. A new major point of contention is where to install the grounding plate, or plates. Some research indicates that a location at or near the waterline is by far the most effective solution. On a sailboat, the lead keel can be used as the grounding plate if the keel is not fiberglass-encapsulated or covered in fairing. If the mast is solidly keel stepped, there would be no need for a separate conductor from the mast to the keel. Metal rudders or propeller struts are also acceptable as grounding plates.

Protecting Electronics

Surge-protective devices (SPD) or transient voltage surge suppressors (TVSS) should be installed on all equipment that's mission critical, expensive, difficult to replace, and/or prone to lightning damage. Examples include the ECU/ECM, alarm systems, chartplotters, and instruments.

Bank of batteries

A bank of TVSSs protecting sensitive electronics.

TVSSs are the most exciting development in the field of lightning protection. These semiconductor devices provide protection by suppressing lightning-related voltage spikes. They are widely used in the telecommunications, wind generation, and avionics industries.

TVSSs are connected across the input terminals supplying voltage to a piece of equipment; they can be thought of as fuses that react to voltage instead of current. The TVSS is an open circuit as long as the supply voltage feeding the equipment is in the normal range. However, if a lightning strike causes a momentary voltage spike and puts, say 1,000 volts on a 120-volt device, the TVSS will "clamp" or short circuit 880 volts and convert it to heat. The excessive heat could, and probably would, damage the TVSS; but destroying a $250 surge arrestor to protect a $5,000 engine controller is good engineering.

Grounding strips

Grounding plates should be long and narrow with groves cut into them to disperse the charge more efficiently.

Voltage surge protection would be prudent for engine controls, navigation systems, steering systems, and shorepower systems. TVSSs come in many voltage ratings, energy ratings, response times, and so on. Some are designed to protect whole distribution systems, while others are suitable for individual equipment protection only. A well-designed system includes cascaded protection, with extra protection on mission-critical and lightning-prone equipment, such as main engines and shorepower systems. The key to a reliable and cost-effective system is to ensure that appropriately rated devices are specified and properly installed. The best TVSS in the world will be ineffective if it is not connected properly.

Despite the best technology, there can still be challenges with an NFPA 780-based system, particularly when the system is improperly or only partially installed. For example, if the air terminal is installed lower than an adjacent antenna, it will not protect the antenna; in that case, the antenna cable carries the lightning current. Also, if the down conductor is connected to the bonding system rather than directly to a dedicated grounding terminal (ground plate), the lightning strike can energize the entire bonding system before discharging into the water. Another common mistake is to secure the lightning down conductor to other wiring. The high current from a strike through the down conductor can result in voltage surges in these adjacent wires, leading to additional damage in equipment that would otherwise be completely unaffected by the lightning strike.

In Conclusion

The recent revolution in marine electronics demands an evolution of our thinking on marine lightning-protection; equipment protection should be an important aspect of any modern lightning protection system. The knowledge and resources to safely transform this change in thinking into reality are readily available, both from the NFPA and industries also at risk from lightning. However, there are unique challenges on pleasure craft that are not addressed by others. These must be solved by sharing the experiences of lightning-protection systems and their effectiveness across the industry.

Related Articles

The truth about ceramic coatings for boats.

Our editor investigates the marketing claims of consumer-grade ceramic coatings.

Fine-Tune Your Side Scan Fishfinder

Take your side-scanning fishfinder off auto mode, and you’ll be spotting your prey from afar in no time

DIY Boat Foam Decking

Closed-cell foam flooring helps make boating more comfortable. Here’s how to install it on your vessel

Click to explore related articles

James Coté

Contributor, BoatUS Magazine

James Coté is an electrical engineer, ABYC Master Technician, Fire Investigator and Marine Investigator. He operates a marine electric and corrosion control consulting firm located in Florida. For more information, go to: cotemarine.net

BoatUS Magazine Is A Benefit Of BoatUS Membership

Membership Benefits Include:

Subscription to the print version of BoatUS Magazine

4% back on purchases from West Marine stores or online at WestMarine.com

Discounts on fuel, transient slips, repairs and more at over 1,200 businesses

Deals on cruises, charters, car rentals, hotel stays and more…

All for only $25/year!

We use cookies to enhance your visit to our website and to improve your experience. By continuing to use our website, you’re agreeing to our cookie policy.

lightning protection sailboat mast

  • Niosh Ag Centers
  • Recent Additions

lightning protection sailboat mast

Boating- Lightning Protection

PDF Version

Those who enjoy Florida's waters certainly should understand the phenomena of thunderstorms--lightning and the precautions to take in order to keep these activities pleasurable--and how to prevent tragedy.

While this phenomenon is occurring in the clouds, a similar phenomenon is occurring on the surface.

Negative charges repel negative charges and attract positive charges. So, as a thunder cloud passes overhead, a concentration of positive charges accumulates in and on all objects below the cloud. Since these positive charges are attempting to reach the negative charge of the cloud, they tend to accumulate at the top of the highest object around. On a boat that may be the radio antenna, the mast, a fishing rod, or even you! The better the contact an object has with the water, the more easily these positive charges can enter the object and race upward toward the negative charge in the bottom of the cloud.

Lightning occurs when the difference between the positive and negative charges, the electrical potential, becomes great enough to overcome the resistance of the insulating air and to overcome the resistance of the insulating air and to force a conductive path between the positive and negative charges. This potential may be as much as 100 million volts. To help you understand the magnitude of this voltage, the voltage needed in an automobile to cause a spark plug to fire is only 15 to 200 volts! And the spark plug gap is but a fraction of an inch!

Lightning strikes represent a flow of current from negative to positive, in most cases, and may move from the bottom to the top of a cloud, from cloud to cloud, or most-feared, from cloud to ground (see Figure 3). And when the lightning does strike, it will most often strike the highest object in the immediate area. On a body of water, that highest object is a boat. Once it strikes the boat, the electrical charge is going to take the most direct route to the water where the electrical charge will dissipate in all directions.

A second example is a sailboat. Lightning strikes the mast. The electrical current follows the mast or wire rope to your hands, through your body to the wet surface, and then through the hull to the water.

Or, while operating a motor boat, the lightning strikes you, passes through your body to the motor, and then to the water.

Or, sitting in your aluminum or fiberglass rowboat, you are holding a graphite (a good electrical conductor) fishing rod. The rod is struck by lightning. The electrical charge passes through the rod, your body, then to the boat to the water.

In all four examples you could be seriously injured. You could be dead.

Watch for the development of large well-defined rising cumulus clouds. Once they reach 30,000 feet the thunderstorm is generally developing. Now is the time to head for shore. As the clouds become darker and more anvil-shaped, the thunderstorm is already in progress.

Watch for distant lighting. Listen for distant thunder. You may hear the thunder before you can see the lightning on a bright day. Seldom will you hear thunder more than five miles from its source. That thunder was caused by lightning 25 seconds earlier. The sound of thunder travels at one mile per five seconds (see Figure 4).

But small boats are seldom made of metal. Their wood and fiberglass construction do not provide the automatic grounding protection offered by metal-hulled craft. Therefore, when lightning strikes a small boat, the electrical current is searching any route to ground and the human body is an excellent conductor of electricity!

Today's fiberglass-constructed small boats, especially sailboats, are particularly vulnerable to lightning strikes since any projection above the flat surface of the water acts as a potential lightning rod. In many cases, the small boat operator or casual weekend sailor is not aware of this vulnerability to the hazards of lightning. These boats can be protected from lightning strikes by properly designed and connected systems of lightning protection. However, the majority of these boats are not so equipped.

If you are considering the purchase of a new or used boat, determine if it is equipped with a properly designed and installed lightning protection system. Such a system is generally more effective and less costly than a system installed on a boat after it has been constructed.

The mast, if constructed of conductive material, a conductor securely fastened to the mast and extending six inches above the mast and terminating in a receiving point, or a radio antenna can serve as the air terminal.

The main conductor carries the electrical current to the ground. Flexible, insulated compact-stranded, concentric-lay-stranded or solid copper ribbon (20- gauge minimum) should be used as the main conductor.

The ground plate, and that portion of the conductor in contact with the water, should be copper, monel or navel bronze. Other metals are too corrosive. The secondary conductors ground major metal components of the boat to the main conductor. However, the engine should be grounded directly to the ground plate.

Lightning arrestors and lightning protective gaps are used to protect radios and other electronic equipment which are subject to electrical surges.

The connectors must be able to carry as much electrical current as other components of the system. Further, the connections must be secure and noncorrosive.

On a large power boat or sailboat, a properly designed and grounded antenna could provide a cone of protection. Presently, however, the vast majority of the radio antenna is totally unsuitable for lightning protection. This is also true of the wires feeding the antenna. If the antenna is not properly grounded, it may result in injury or death and cause considerable property damage.

Ideally, an effective ground plate should be installed on the outside of all boats when the hulls are constructed. Unfortunately, this is not often done. Such a ground plate would help manufacturers design safer lightning protection systems for the boats.

  • A lightning protective mast will generally divert a direct lightning strike within a cone-shaped radius two times the height of the mast. Therefore, the mast must be of sufficient height to place all parts of the boat within this cone-shaped zone of protection (see Figure 6).
  • The path from the top of the mast to the "water" ground should be essentially straight. Any bends in the conductor should have a minimum radius of eight inches (see Figure 7).
  • Major metal components aboard the boat, within six feet of the lightning conductor, should be interconnected with the lightning protective system with a conductor at least equal to No. 8 AWG copper. It is preferable to ground the engine directly to the ground plate rather than to an intermediate point in the lightning protection system.
  • If the boat's mast is not of a lightning protective design, the associated lightning or grounding connector should be essentially straight, securely fastened to the mast, extended at least 6 inches above the mast and terminate in a sharp receiving point.
  • The radio antenna may serve as a lightning protective mast, provided it and all the grounding conductors have a conductivity equivalent to No. 8 AWG copper and is equipped with lightning arrestors, lightning protective gaps, or means for grounding during electrical storms. Most antennas do not meet these requirements. The height of the antenna must be sufficient to provide the cone-shaped zone of protection.
  • Antennas with loading coils are considered to end at a point immediately below the loading coil unless this coil is provided with a protective device for by-passing the lightning current. Nonconducting antenna masts with spirally wrapped conductors are not suitable for lightning protection purposes. Never tie down a whip-type antenna during a storm if it is a part of the lightning protection system. However, antennas and other protruding devices, not part of the lightning protection system, should be tied down or removed during a storm.
  • All materials used in a lightning protective system should be corrosion-resistant. Copper, either compact-stranded, concentric-lay-stranded or ribbon, is resistant to corrosion.
  • The "water" ground connection may be any submerged metal surface with an area of at least one square foot. Metallic propellers, rudders or hull will be adequate.
  • On sailboats, all masts, shrouds, stays, preventors, sail tracks and continuous metallic tracks on the mast or boom should be interconnected (bonded) and grounded.
  • Small boats can be protected with a portable lightning protection system. This would consist of a mast of sufficient height to provide the cone of protection connected by a flexible copper cable to a submerged ground plate of at least one square foot. When lightning conditions are observed in the distance, the mast is mounted near the bow and the ground plate dropped overboard. The connecting copper cable should be fully extended and as straight as possible. The boaters should stay low in the middle or aft portion of the boat.
  • Stay in the center of the cabin if the boat is so designed. If no enclosure (cabin) is available, stay low in the boat. Don't be a "stand-up human" lightning mast!
  • Keep arms and legs in the boat. Do not dangle them in the water.
  • Discontinue fishing, water skiing, scuba diving, swimming or other water activities when there is lightning or even when weather conditions look threatening. The first lightning strike can be a mile or more in front of an approaching thunderstorm cloud.
  • Disconnect and do not use or touch the major electronic equipment, including the radio, throughout the duration of the storm.
  • Lower, remove or tie down the radio antenna and other protruding devices if they are not part of the lightning protection system.
  • To the degree possible, avoid making contact with any portion of the boat connected to the lightning protection system. Never be in contact with two components connected to the system at the same time. Example: The gear levers and spotlight handle are both connected to the system. Should you have a hand on both when lightning strikes, the possibility of electrical current passing through your body from hand to hand is great. The path of the electrical current would be directly through your heart--a very deadly path!
  • It would be desirable to have individuals aboard who are competent in cardiopulmonary resuscitation (CPR) and first aid. Many individuals struck by lightning or exposed to excessive electrical current can be saved with prompt and proper artificial respiration and/or CPR. There is no danger in touching persons after they have been struck by lightning.
  • If a boat has been, or is suspected of having been, struck by lightning, check out the electrical system and the compasses to insure that no damage has occurred.
  • Boating in Florida's waters is an enjoyable activity for many people. Keep it that way!
  • Listen to the weather reports! Learn to read the weather conditions. Heed these reports and the conditions. Stay off or get off the water when weather conditions are threatening.
  • Install and/or maintain an adequate lightning protection system. Have it inspected regularly. Follow all safety precautions should you ever be caught in a thunderstorm. By using good judgment, it is less likely that first aid or CPR will be needed while boating.
  • National Fire Codes. Lightning Protection Code--NFPA 78; Fire Protection Standard for Motor Craft--NFPA 302, 14. National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
  • Standards and Recommended Practices for Small Craft. Standard E-4, Lightning Protection. American Boat and Yacht Council, P.O. Box 806, Amityville, NY 11701.
  • Sitarz, Walter A. Boating Safety--Thunderstorms (MAP-5), Florida Sea Grant College Program, University of Florida, Gainesville, FL 32605.

William J. Becker, Professor and Extension Safety Specialist, Agricultural Engineering Department, Cooperative Extension Service, Institute of Food

Publication #: SGEB-7 October 1992

Disclaimer and Reproduction Information: Information in NASD does not represent NIOSH policy. Information included in NASD appears by permission of the author and/or copyright holder. More

Log in or Sign up

You are using an out of date browser. It may not display this or other websites correctly. You should upgrade or use an alternative browser .

Lightning Protection - Wood mast

Discussion in ' Boatbuilding ' started by M&M Ovenden , Jul 31, 2016 .

M&M Ovenden

M&M Ovenden Senior Member

Hi, Any experience running lightning conductors in a wood mast ? We will have a gaff rig, so no sail track. We will probably laminate a mast up, so it would be possible to run a conductor in the center, but I'm somewhat worried about heating and having the mast "explode" if hit. I'm considering having a conductor laminated in above the hounds, and connect it to one of the shrouds, but most standards say a "continuous" conductor. Thoughts ? Comments ? Suggestions ? Cheers, Mark  

PAR

PAR Yacht Designer/Builder

The mast will not explode. Areas of concern are; connections and hard angle changes in direction and where it passes through things, like decks, bulkheads, etc. This are places the arc can jump, which will act much like an explosion. The idea is a continuous, as straight as practical run from masthead to ground plate. This directs the path straight to earth, which is what you want. FWIW, a gaffer without a track isn't very likely to get struck, but if you must, you can cut a rabbet (most common) and bury the conductor or put it inside the mast.  

CDK

CDK retired engineer

M&M Ovenden said: ↑ Hi, Any experience running lightning conductors in a wood mast ? We will have a gaff rig, so no sail track. We will probably laminate a mast up, so it would be possible to run a conductor in the center, but I'm somewhat worried about heating and having the mast "explode" if hit. I'm considering having a conductor laminated in above the hounds, and connect it to one of the shrouds, but most standards say a "continuous" conductor. Thoughts ? Comments ? Suggestions ? Cheers, Mark Click to expand...

mydauphin

mydauphin Senior Member

True but I have many a bust wood mast from lighting, may be it is all stuff people put on them like antennas, stays, lights. I would either put nothing at all on mast which defeats it's purpose, or a big welders cable from top to the ground on hull. But lighting though rare can be devastating. I saw a boat on the hard with a hole on its side, some one painted over the ground and voltage decide to remove it.  
Hi, I'd like to bump this thread again and see if there are any opinions considering the use of synthetic shroud material. This would mean no real conductive material overhead for protection. Thoughts, comments ? Cheers, Mark  

tom28571

tom28571 Senior Member

It appears that lightning does pretty much what it wants to based on physics of the particular situation, which is seldom understood well enough for humans to predict. Wood masts can certainly be struck by lightning just as trees are commonly hit. If the mast is reasonable dry an interior or exterior conductor will likely reduce the damage of a strike. Paul is right about avoiding sharp or even small radius turns in the conductor but it might help to understand why. A turn or bend in a conductor acts like an inductance which acts like resistance to high frequency current. While a lightning strike may seem to be a DC current, it will have an extremely sharp leading edge followed by a slower decay which contains all frequencies. That is why a strike is always picked up by radio receivers. A poorly made splice or connector will be a point of resistance and may heat up and explode if subjected to a large current. If the bend or arc in the conductor occurs near anything that is grounded the resistance of the bend and the capacitance between the conductor and ground will allow an arc to ground through the low resistance of the capacitance. Consequently, running the conductor along the inside of a hull below the waterline is a common invitation to holes in the hull from a strike. As an engineer often working with systems exposed to lightning, I found that it was a difficult taskmaster and predicting accurately the result of protective efforts was sometimes a sobering realization of our imperfect knowledge.  

SamSam

SamSam Senior Member

I've read in a number of places to only use braided wire, but this is the only explanation I've seen for why it's braided. Also, it's never covered in an insulator like welding cable is, and it's not recommended to even paint it. I think the braiding also helps keep the wires all together, since they aren't covered and held together with anything. Lightening protection seems a bit like black art or voodoo, so it might be a good thing to google 'lightening protection for boats' . Also, scroll down to the bottom of this page for 'similar threads', there have been a number of discussions. (23) Technical facts: Lightning Travels on the surface of the Lightning Rods and cable. The many strands in the specially designed braided cable adds greatly to it’s surface area. The BRAIDING in the Lightning Cable is very important as it has the effect of cancelling the Electro Magnetic Pulse (EMP). As current travels down each braided strand of wire and since the strands “cris-cross” each other, and “like charges repel”, The braided cable has the effect of cancelling the EMP. Compared to regular electrical wire, the EMP around regular wire can couple with other wires under roof and behind walls and can transfer very high voltages into the electrical wiring. EXCEPTION: On structural steel buildings and below ground, un-stranded cable of sufficient size is ok since the EMP will be absorbed by the steel in the structure and in the earth. http://www.lightningrodsupply.com/index_files/page0008.htm  
Braided wire does may have some advantages at higher frequencies but I'd need to see some objective testing to know whether the overall effect is positive or negative for lightning protection. Higher frequencies do tend to run on the surface of a wire but all those loops do represent a lot of inductive resistance to high frequencies. I've not heard of using braided wire in lightning protection. I would personally prefer flat straps as probably having the most effective surface area per unit of conductor and the least inductance when run straight. Lightning is dark magic so I may be wrong. The reason paired communication wire is twisted is that each twist represents a "loop" that generates a field in opposite direction to its neighbor and the induced currents tend to cancel each other. The effect is the same whether transmitting or receiving.  
Hi, Any thoughts on running a large lightning conductor inside a wood mast? I'm wondering if anybody else has done this. thanks ! Mark  
Inside the mast is just asking for a significant fire potential.  
  • Advertisement:
yea, fire is my worry. In theory we have an ok idea of the lightning waveform, and could size accordingly, but the unknowns of terminals/connections means anything could happen. I'm considering running a 2/0 cable (much bigger than the 4awg normally spec'd) to solid copper bar to exit the mast at the top/bottom for other connects (drill/tap it for taking a lug). This would produce a couple sharp bends. It seems that if a wood mast is hit, it's not a good situation, so maybe doing this offers better protection at least for the crew on deck. I'm going to be laminating the mast in about a month, so I have time to stress about this a bit. Moving from wire rope to synthetic standing rigging changes the game. Cheers, Mark  

Sailor95

I want to build a class lightning

robwilk37

dyneema and lightning...

zstine

IP Protection of Kelsall KSS or Cylinder Mold Building Methods

tontoOx

Epoxy Method and Protection of Epoxy

LP

Epoxy protection.

nimblemotors

Keel abrasive protection, HDPE

  • No, create an account now.
  • Yes, my password is:
  • Forgot your password?

Boat Design Net

Sailboat Owners Forums

  • Forums New posts Unanswered threads Register Top Posts Email
  • What's new New posts New Posts (legacy) Latest activity New media
  • Media New media New comments
  • Boat Info Downloads Weekly Quiz Topic FAQ 10000boatnames.com
  • Classifieds Sell Your Boat Used Gear for Sale
  • Parts General Marine Parts Hunter Beneteau Catalina MacGregor Oday
  • Help Terms of Use Monday Mail Subscribe Monday Mail Unsubscribe

Lightning + Mast = ????

  • Thread starter Slow Mo^cean
  • Start date Jul 15, 2012
  • Forums for All Owners
  • Ask All Sailors

Slow Mo^cean

Slow Mo^cean

Has anyone had experience with lightning hitting their mast? We got caught out in a surprise super cell storm today with some heavy rain and lots of lightning. Luckily we weren't hit, just soaked. When it got really bad, I abandoned all hope of trying to motor back to the ramp, dropped anchor and went below. We had lightning all around us and my wife and I couldn't help think what would happen if we were hit by lightning. My biggest fear was it travelling down the side stays and into the cabin. Just wondering what the best thing to do is if we happen to be caught in the same storm again.  

RichH

Ive been hit several times. If the boat is well bonded (all metal objects electrically connected by heavy wiring, etc.) and there is an 'easy' pathway overboard for the lightening strike then there typically wont be much structural damage, other than 'fried' electronics. There has been a continual 'shift' in the current thinking of how to keep lightening out of the inside of a boat. Here's the probable latest thinking on the subject: http://www.marinelightning.com/ The person who runs this corporate entity was the famous 'lightning guru' at the University of Florida and his recommendations for marine protection then were probably the most sought after in the entire country. Apparently his thinking has evolved since his retirement to start a commercial marine lightning protection company - multiple 'sideflash' electrodes installed along the boats waterline, etc. etc. to help get the strike 'out' of the boat.  

kloudie1

not long after I sold my Spirit 23 to a friend, he was hit .. Wife was inside the cabin .. the light bulbs inside and in the navigation lights popped .. She was not hurt.. He was at the tiller and also was not hurt.. The lightning did jump from the chainplates and out the hull.. It vaporized the resin in a couple of spots below the waterline leaving a gauze of fiberglass cloth that wept water .. He was able to manually pump and got the boat back to the boatyard and on the hard so she would not sink. It was repaired and no other problems were noted.. engine had a non-electronic ignition system, and there were no electronics on board when they were struck..  

Douglast

i often think the path the lightening will take is from the mast to the bottom of the mast then bursting sideways through me on the way to the outboard as im on the tiller .. regardless i am going to connect the mast to my drop keel with #4 wire and my shrouds and forestay with #6 to my keel or a seperate large conductor that i can put in the water. i am going to try for wiring that can be non permanent but quick to "hook up" i want to be able to pull the sails,throw anchors,hook up ,lift outboard and get in the cabin...lol..  

onecoolair

Back when we were doing a lot of J-24 racing. Sometimes we would get caught out in some pretty nasty lightening storms. We would connect the spinnaker pole and drop the other end into the water and then hunker down pray and wait it out.  

You take some of your mooring chain, wrap it round your mast, drop the other end into the water. Then unhook your VHF, and MF radio if you have one. You stick any electronics such as walkie talkie or epirb, in the oven (which is a faraday cage) Then you hope you dont get hit. If you have a carbon fiber mast, then good luck, those things explode when hit. I have sailed right through a lightening storm, and not been hit, i think its a tiny chance you ever will be hit. What i thought in the first storm, was my boat is the highest thing around, but if you think of it, if the lightning comes from right above you, then your boats mast is the closest thing to the earth, but unless it right above you, your thirty foot mast is not the closest thing, if its off to your side, lightening takes the shortest path, if its a hundred yards to your side, then the shortest path is still into the sea. To hit your mast, means it has to travel, a longer distance.  

kenn

Douglast said: ...I am going to connect the mast to my drop keel with #4 wire and my shrouds and forestay with #6 to my keel or a seperate large conductor that i can put in the water. Click to expand

I like the jumper cable idea. I think from now on, I'll carry a set or two and connect one to the mast and one to one of the stays.  

Slow Mo^cean said: I like the jumper cable idea. I think from now on, I'll carry a set or two and connect one to the mast and one to one of the stays. Click to expand

KD3PC

Were I you guys, I would really research the idea of chains and jumper cables....they are way too "iffy" a connection to provide ANY safety..read high resistance path, link gap, connectivity, current capacity of chain link and jumper cables, add wet to the above...etc else Darwin will have his way.... You can actually make the chances of a hit better, or worse disturb the "natural" shedding provided by the design of the boat... All that being said, it is your boat and your butt...but don't be surprised if you get a hit and the insurer does not pay....anything....for your efforts. YMMV  

KD3PC said: Were I you guys, I would really research the idea of chains and jumper cables....they are way too "iffy" a connection to provide ANY safety..read high resistance path, link gap, connectivity, current capacity of chain link and jumper cables, add wet to the above...etc You can actually make the chances of a hit better, or worse disturb the "natural" shedding provided by the design of the boat... Click to expand
kenn said: Um, what? Do you speak from experience, or are you thinking out loud, like the rest of us are? What is this "natural" shedding that is part of the boat design? Click to expand
kenn said: I do have an electrical background, and I've tried to stay current with the issue of lightning hitting boats, and the possibilities for protection. The common denominator of most solutions is that you try to offer an easy path from the masthead to the water, that will minimize injury to occupants and damage to the boat. Click to expand
kenn said: Referring specifically to our small trailer-sailor, real no-sh1t 100% effective lightning protection is prohibitively expensive and not justifiable. The preferred solution is to not be in the boat during lightning. But IF we are caught out in lightning, all we can do is to make it easier for lightning to get where it wants to go via the outside of the boat, while we remain a bit safer inside the boat. Click to expand
kenn said: If the choice is between nothing (which means any lightning hit will have to arc the last few inches to the water, and is therefore unpredictable; could burn someone or hole the hull) , and doing the chain or jumper-cable thing (which offers it a much lower-impedance, outside connection to the water), yoiu can guess what I'll do. Click to expand
kenn said: If you have a better solution, please let's have it. Click to expand

Maine Sail

KD3PC said: ...I posit that the easiest way for the current to dissipate is to follow that more robust path of masthead, shroud, chainplate and jump to ground...multiple poorer paths will do nothing except explode when the current attempts to take that weak path and jumps to a more appropriate path. Click to expand
a chain with marginal continuity, questionable conductivity and a casual attachment, will offer nothing as far as conductivity of high current. Those links merely touching do nothing. Similarly a jumper cable with a large alligator clip is not a connection, it is merely a high resistance short, as will be the marginal connection of a couple of wraps of chain around the mast. Click to expand
There is NO full time, safe solution to a direct lightning strike. The current is going to ground as quickly as possible, and there is NO predictable path. You may comfort yourself with these actions, as well as those of the U FL expert...at greater cost, but they will do nothing to guarantee the path and how it exits the boat. Click to expand

walt

Something like this http://zenpole.com/Zenpole_tech_picture_brochure_rev6.pdf (project got stalled because of the cost of liability insurance required for licensing the patent from Dr. Thomson/ U of F)  

Sumner

kenn said: ....Taking all your points into consideration, what would you then think of an arrangement similar to the jumper cables, using say #2AWG welding cable, where the connection to the mast is a high current quick-disconnect of some type, and the in-water end is a suitable sized copper bar or plate?... Click to expand

lightning protection sailboat mast

Sumner said: One possible alternative for the trailer sailor is the ZenPole system (just noticed Walt posted as I was writing this)... http://zenpole.com/ ...if it comes to market. It is based on the technology mentioned in Rich's post on taking the lightning charge to the water's surface where lightning strikes in nature and not trying to dissipate the charge down in the water (which is real hard to do in fresh water). It uses electrodes that are designed with the trailer sailor in mind. Ruth and I had a prototype on our boat but luckily never got to test it. We have been in... ..... some really bad lightning on a couple trips though before having the ZenPole on the boat. Here are some pictures and why we believe in it enough to use it ... http://purplesagetradingpost.com/sumner/macgregor2/outside-43.html ... and like MS said these systems aren't designed to stop a strike and the statistics don't show that they attract a strike. They are there to hopefully lessen the damage, especially to occupants and to prevent holes from being blown in the vessel. I was going to go the chain or jumper cable route a year or two ago, but after reading felt that it would not do much, especially in fresh water where we are most of the time when on the Mac, Sum [FONT=Arial, sans-serif] ============================ [/FONT] Our Endeavour 37 Our MacGregor 26-S Pages Our Trips to Utah, Idaho, Canada, Florida Mac-Venture Links Click to expand

It seems like a lot of the debate here is the worry about losing a chain or set of jumper cables to amperage overload. To me, I could care less if a $20 pair of jumped cables or chain gets smoked, as long as the lightning travelled through it instead of me or a family member on board. My biggest fear is the lightning travelling through a stay and into a chainplate, which is inches from somebody's head in the cabin..  

Slow Mo^cean said: It seems like a lot of the debate here is the worry about losing a chain or set of jumper cables to amperage overload. To me, I could care less if a $20 pair of jumped cables or chain gets smoked, as long as the lightning travelled through it instead of me or a family member on board. My biggest fear is the lightning travelling through a stay and into a chainplate, which is inches from somebody's head in the cabin.. Click to expand

Mark Maulden

Mark Maulden

A severe lightning strike is considered in the aircraft industry as 200,000v AT 200,000 amps. A 747 does pretty well at taking this kind of strike as there is a lot metal to go through. Even then, sometimes there are holes in the fuselage from direct hits. All electronics are well shielded which you're not going to do on a fiberglass boat. When lightning strikes, there is an initial attachment point to an "object" and there is an exit point on that "object". If you look at pix of aircraft strikes, it appears that it is being struck twice. Once up front and once in the rear ( or multiple). The aircraft (or boat) is simply part of the path. There is a video of a 747 getting hit out of Narita Japan. You can google it. The problem with using cables/wires to the water is that they will be blown off. It is not the magnitude of the current rather the magnetic forces (due to high current) that try to straighten the conductors out that blow them off. You can have the best connections, but if the conductors are a cirquitous path, they're not going to survive and current goes elsewhere.  

  • This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register. By continuing to use this site, you are consenting to our use of cookies. Accept Learn more…

COMMENTS

  1. Sailing in lightning: how to keep your yacht safe

    Lightning protection systems have two key components: First, a mechanism to provide a path with as little resistance as possible that conducts a lightning strike to the water. ... The cross-sectional area of the metal in aluminum masts on even small sailboats is such that it provides a low enough resistance path to be the down conductor ...

  2. Lightning Protection: The Truth About Dissipators

    This indicates that objects more than 150 feet above the surrounding terrain are more likely to be hit than those which are shorter (most sailboat masts). Until 1980, it was assumed that a grounded mast would provide protection against a direct lightning strike for all objects within a 45-degree cone whose apex was at the masthead.

  3. Getting the Charge Out of Lightning

    The goal of lightning protection is to offer a low resistance path to ground, in this case, the water. On a sailboat equipped with an aluminum mast and stainless steel standing rigging, the basic components of the lightning protection system are in place. While neither aluminum nor stainless steel is an outstanding electrical conductor, the ...

  4. Sailboat Lightning Protection: Technical Advice

    Lightning protection system is a bonding, grounding and shielding arrangement made of four parts: Air terminals, down conductors, a low-impedance ground system and sideflash protection ... Diagram of Boat with Masts in Excess of 15 m (50 ft) Above the Water; Protection Based on Lightning Strike Distance of 30 m (100 ft).

  5. Marine Lightning Protection Inc

    Marine Lightning Protection Inc. ... Mast base grounding and mast systems surge protection . Tier 2: Add immersed ground studs aft ... This is illustrated for a sailboat on the right. The lightning conductor from mast base connects to both the chain plate and the loop before passing down to a daisy-chain Siedarc TM electrode just ...

  6. Expert sailing advice: How to handle a lightning strike on board

    Take a fix and plot it on a paper chart. Update your log using dead reckoning. Avoid touching metal around the boat, such as shrouds and guardrails. A nearby strike will be blindingly bright. Sit ...

  7. Yacht lightning strikes: Why they cause so much damage and how to

    According to US insurance claims (from BoatUS Marine Insurance) the odds of a boat being struck by lightning in any year are about 1 per 1,000, increasing to 3.3 per 1,000 in lightning prone areas ...

  8. MARINE LIGHTNING PROTECTION: Getting Z-Z-Z-Zapped on a Sailboat

    One source states that a sailboat with a 50-foot mast will on average be struck once every 11.2 years. According to insurance data, the general average for all boats is about 1.2 strikes per 1,000 boats each year. The average bill for damage is around $20,000. Most strikes are on sailboats (4 strikes per 1,000 sailboats each year).

  9. Lightning Protection

    What follows is based on the recommendations for lightning protection provided by the American Boat & Yacht Council, Standard E4. ... If your sailboat is a vessel with an aluminum mast you have the starting point of a well-grounded lightning rod. This will provide a zone of protection for a radius around its base equal to the height of the ...

  10. Protect Your Boat from Lightning

    Priced at under $100, even the humblest of sailors can enjoy some degree of protection from lightning strikes on their vessels. A more recent variation of the masthead rod is a lightning static dissipater, which looks like a metallic dust broom mounted upside down on a sailboat mast.

  11. FORESPAR Lightning Master™ Static Dissipater

    Reduce your boat's exposure to a direct lightning strike. Forespar's Lightning Master Static Dissipater lowers the exposure to a direct lightning strike by controlling the conditions which trigger direct strike (i.e. it reduces the build-up of static ground charge and retards the formation of the ion "streamers" which complete the path for a lightning strike).

  12. Protect Against Lightning Strikes

    Lightning typically strikes the tallest object, and boats on the water fit that description. As you would expect, sailboats with high masts have the greatest risk, but even personal watercraft have been hit. ... The most common protection against lightning strikes is the metal duster-looking device on the top of a mast. With modern lightning ...

  13. Modern Lightning Protection On Recreational Watercraft

    While the recommendations in NFPA 780 have yet to be embraced by the recreational boating industry as a whole, understanding what it says — and why — may assist you in developing a lightning-protection plan for your boat. Lightning 101. The simplest way to think of a lightning strike would be as a short circuit between the cloud and the earth.

  14. Grounding the mast for Lightning Protection

    Feb 14, 2003. #1. I'd like some input on how to ground the mast to achieve protection from lightning strikes. This is a real concern living in Florida as the rainy season ( with almost daily thunderstorms )is only months away.u000bu000bOn most boats, the manufacturer goes to great lengths to run a big ground cable from the mast to the keel or a ...

  15. Lightning Strikes And Boats: How To Stay Protected

    Plumbing, electrics — all come under their purview. The ABYC suggests that the best way to protect a vessel from a lightning strike manuals suggest installing a lightning mast at least one-third the length of the boat in height above the boat, forming what it calls a 60-degree cone of protection.

  16. Lightning and Boating: How to Stay Protected

    Practical Lightning Protection. The American Boat and Yacht Council (ABYC) recommends installing a lightning mast above the boat to create a "60-degree cone of protection." However, maintaining a straight path to the waterline and keeping a grounding plate submerged at speed can be challenging. Laying antennas flat, raising Bimini tops or ...

  17. Lightning Protection for Boats, Sailboats and Yachts

    EvoDis® Lightning Prevention System. EvoDis® System Marine Series is the only lightning protection solution which dissipates the charges on the mast and makes the boats, sailboats and yachts "invisible" to lightning. This process keeps the surrounding electric field lower than the threshold level and avoids the development of the ...

  18. Lightning protection

    Just make sure that there's a boat nearby with a substantially taller mast than yours. We're three or four slips down from a really impressive large sailboat. BTW contrary to the old saying, lightening really does strike the same place twice, at least when the mast was replaced. First time burned out all the wiring and fried all the electronics.

  19. Lightning Protection

    4. Insulate yourself as best you can, don't be hanging on the shrouds, backstay or hugging the mast during a lightning storm. Take advantage what cone of protection you do have. With any reasonable mast height the cone covers the whole boat. Probably why more lighning injuries on power boats - no cone of protection. 5.

  20. NASD

    These suggestions are summarized below: A lightning protective mast will generally divert a direct lightning strike within a cone-shaped radius two times the height of the mast. Therefore, the mast must be of sufficient height to place all parts of the boat within this cone-shaped zone of protection (see Figure 6).

  21. Lightning protection

    Apr 8, 2007. #1. Has anybody installed lightning protection on their Mac 26?u000bu000bI have been doing research on the subject and have come up with 3 options:u000bu000b1. Ewen Thompon did a study in 1992 - Florida Sea Grant College Program He concludes that the mast should be grounded.u000bu000b2. William Becker, University of Florida, also ...

  22. Lightning Protection

    Wood masts can certainly be struck by lightning just as trees are commonly hit. If the mast is reasonable dry an interior or exterior conductor will likely reduce the damage of a strike. Paul is right about avoiding sharp or even small radius turns in the conductor but it might help to understand why.

  23. Lightning Protection

    CC 30 South Florida. Oct 6, 2020. #3. Lightning always seeks the path of least resistance, there is a school of thought that claims that providing a path of lesser resistance promotes lightning strikes. Another School of thought indicates that the boat is under a cone of protection which extends from a point at the top of the mast to a circle ...

  24. Lightning + Mast = ????

    over 40 years on the water, a large majority of it on Chesapeake Bay where lightning is quite frequent. A mast and rigging provide a point for lightning to follow and a protection area within, see faraday cage. The mast is usually mechanically attached to a keel, foot plate or some such that is mechanically attached to the boat.